FINAL PRELIMINARY ENGINEERING REPORT APPENDICES

I-75 (SR 93) at NW 49 Street PD\&E Study
Marion County, Florida
Financial Project ID Number: 435209-1-22-01
ETDM Number: 14242

January 2021

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by FDOT pursuant to 23 U.S.C. §327 and a Memorandum of Understanding dated December 14, 2016, and executed by Federal Highway Administration and FDOT.

TABLE OF CONTENTS

APPENDIX A: REFERENCE DOCUMENTS
APPENDIX B: CONCEPT PLANS AND TYPICAL SECTION PACKAGE APPENDIX C: BENEFIT COST/ANALYTICAL HIERARCHY PROCESS
APPENDIX D: RIGHT-OF-WAY ESTIMATE
APPENDIX E: COST ESTIMATE
APPENDIX F: FEMA FLOODPLAIN MAP
APPENDIX G: DESIGN VARIATION MEMORANDUM

Appendix A: Reference Documents

A. Reference Documents

1. Ocala/Marion Transportation Planning Organization (TPO) 2040 LRTP
2. Ocala/Marion TPO Transportation Improvement Program
3. 2019 Florida Department of Transportation Design Manual
4. FY 2020-2021 Florida Department of Transportation Standard Plans
5. AASHTO Geometric Design of Highways and Streets

B. Companion Documents

1. Interchange Justification Report
2. Catgorical Exclusion Type II
3. Contamination Screening Evaluation Report
4. Noise Study Report
5. Natural Resources Evaluation
6. Culture Resource Assessment Survey
7. Conceptual Stage Relocation Plan
8. Location Hydraulics Report
9. Pond Siting Report
10. Sociocultural Effects Evaluation
11. Context Classification Request Form

Appendix B: Concept Plans and Typical Section Package

Concept Plans

CONTRACT PLANS

FINANCIAL PROJECT ID 435209-1-22-01
MARION COUNTY (36210000) STATE ROAD NO. I-75 (SR 93) at NW 49 Street

carlos
Digitally signed
by carlos
rodriguez rodriguez Date: 2020.12.15 09:53:48-05'00'

ROADWAY PLANS ENGINEER OF RECORD:

CARLOS D. RODRIGUEZ, P.E. P.E. LICENSE NUMBER 72638 METRIC ENGINEERING, INC.
13940 SW 136 STREET - SUITE 200 MIAMI, FLORIDA - 33186 CERTIFICATE OF AUTHORIZATION 00002294

FDOT PROJECT MANAGER:
AMY WINDOM, P.E

GOVERNING STANDARD SPECIFICATIONS:
Florida Department of Transportation, FY 2021-2022 Standard Specifications
for Road and Bridge Construction at the following wedsite.
http://www.fdot.gov/programmanagement/Implemented/SpecBooks

CONSTRUCTION CONTRACT NO.	FISCAL YEAR	SHEET NO.
		1

DESIGN SPEED $=45 \mathrm{MPH}$
nw 49 st urban typical section with curb \& gutter
\& CONST. STA. $131+00.00$ TO STA. 147+15.31
q CONST. STA. $150+30.31$ TO STA. $177+64.84$

IIIIONS				METRIC ENGINEERING, INC. 13940 S.W. 136 STREET SUITE 200 MIAMI, FLORIDA 33186 TEL. (305) 235-5098 FAX. (305) 235-5271 CERTIFICATE OF AUTHORIZATION 2294	STATE OF FLORIDADEPARTMENT OF TRANSPORTATION			$T Y P I C A L S E C T H O N$	
DATE	DESCRIPTION	DATE	DESCRIPTION					No.	
					ROAD NO.	COUNTY	FINANCIAL PROJECT ID		
					49 ST	MARION	435209-1-22-01		3

DESIGN SPEED $=45 \mathrm{MPH}$
nw 49 ST STRUCTURES TYPICAL SECTION
\& CONST. STA. $147+15.31$ TO STA. $150+30.31$

DATE	DESCRIPTION	DATE	DESCRIPTION	METRIC ENGINEERING, INC. 13940 S.W. 136 STREET SUITE 200 TEL. (305) 235-5098 FAX. (305) 235-5271 CERTIFICATE OF AUTHORIZATION 2294	STATE OF FLORIDADEPARTMENT OF TRANSPORTATION			TYPICCAL SECTION	SHEET No.
					ROAD NO.	COUNTY	FINANCIAL PROJECT ID		
					49 ST	marion	435209-1-22-01		4

DESIGN SPEED $=45 \mathrm{MPH}$
one lane ramp typical section

I-75 SOUTHBOUND OFF-RAMP \& CONST. STA. $600+00.00$ TO STA. $640+00.00$ -75 SOUTHBOUND ON-RAMP \& CONST. STA. $700+00.00$ TO STA. $745+87.90$ I-75 NORTHBOUND OFF-RAMP \& CONST. STA. $400+00.00$ TO STA. $445+42.50$
I-75 NORTHBOUND ON-RAMP \& CONST. STA. $500+00.00$ TO STA. $546+8720$

REVIIIONS				METRIC ENGINEERING, INC. 13940 S.W. 136 STREET MIAMI, FLORIDA 33186 TEL. (305) 235-5098 FAX. (305) 235-5271 CERTIFICATE OF AUTHORIZATION 2294	STATE OF FLORIDADEPARTMENT OF TRANSPORTATION			TYPICAL SECTION	
DATE	DESCRIPTION	DATE	DESCRIPTION					No.	
					ROAD NO.	Countr	FINANCIAL PROJECT ID		
					49 ST	MARION	435209-1-22-01		5

$\frac{\text { TYPICAL SECTION }}{\text { DDI ALTERNATIVE }}$

BRIDGE NO. TBD

REVISIONS						georges el-gharib, p.e. P.E. LICENSE NO. 72288 bCC engineering, lcc. 160 N WESTMONTE DRIVE, SUITE 2000 altamonte springs, florida 32714	DRAWN BY: SP 08-20 CHECKED BY: LFR 08-20 DESIGNED BY: YH 08-20 CHECKED BY:	STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION			TYPICAL SECTION		own no.		
DAE	${ }^{\text {er }}$	DEscraplow			DEscopprow										
													roger mume	I-75 (SR 93) AT NW 49TH STREET FROM END OF NW 49TH STREET TO END OF NW 35TH STREET	sterino
								SR 93	marion	435209-1-22-01	B8-2				

Typical Section Package

FINANCIAL PROJECT ID 435209-1-22-01
MARION COUNTY (14242)
I-75 (SR 93) INTERCHANGE AT NW 49TH ST

carlos
 Digitally signed by carlos rodriguez rodriguez $\begin{aligned} & \text { Date: } 2021.02 .11 \\ & \text { 16:47:58-05'00' }\end{aligned}$

TYPICAL SECTION PACKAGE
SHEET NO SHEET DESCRIPTION

TYPICAL SECTION CONCURRENCE

CONTEXT CLASSIFICATION CONCURRENCE:
 Smith
fdot district intermodal systems CDOT DISTRIIT INTERMR
DEVELOPMENT MANAGER

```
(1) C1:NATURAL
(x) cзc: suburban comm.
() C2:RuRal
    () C4:urban general
    ) C2T:Rural town () C5:urban CENTER
() c3R: suburban res
    () CG: urban Core
N/A:L.A. FACILITY
```


FUNCTIONAL CLASSIFICATION

```
() FREEWAY/EXPWY () MAJOR COLLECTOR
(x) pricipal () miNOR COLlector
(1) prncipal arterial () local
    minor ARTERIAL
```

 HIGHWAY SYSTEM
) national highway system
,) SATIONAL HIGHWAY SYSTEM
, STATE highway system
(X) off-State highway system

ACCESS CLASSIFICATION

(1) 1 -freewar
() 2-RESTRICTIVE w/Service Roads
(x) 3-RESTRICTIVE w/660 ft. Connection Spacing
) 4 - Non-RESTRICTIVE w/2640 ft. Signal Spacing
() 5 - RESTRICTIVE w/440 ft. Connection Spacing
() 6 - Non-RESTRICTIVE w/1320 ft. Signal Spacing
) 7 - Both median types

CRITERIA

(X) new construction / reconstruction
() RESURFACING (LA FACILITIES)
() RRR (ARTERIALS \& COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:
N/A

DESIGN SPEED $=45 \mathrm{MPH}$
nW 49 St URBAN TYPICAL SECTION WITH CURB \& GUTtER
q CONST. STA. $131+00.00$ TO STA. $147+15.31$
\& CONST. STA. $150+30.31$ TO STA. $177+64.84$

TRAFFIC DATA

$=2015$ AADT $=$ N/A
ESTIMATED OPENING YEAR $=2025$ AADT $=14900$ ESTIMATED OPENING YEAR $=2025$ AADT $=14900$
ESTIMATED DESIGN YEAR $=2045$ AADT $=21500$
$K=9 \% \quad D=63.5 \% \quad T=24 \%$ (24 HOUR)
DESIGN HOURT $=12 \%$
DESIGN SPEED $=45 \mathrm{MPH}$
POSTED SPEED $=45 \mathrm{MPH}$

FINANCIAL PROJECT ID	SHEET NO.
$435209-1-22-01$	2

```
) C1 : NATURAL
(x) czC: suburban comm.
, C2:RURal
    () C4:urban general
C2T:RURal town () C5:URban center
() c3R: suburban res. () c6:urban core
() na la facuitr
```


FUNCTIONAL CLASSIFICATION

```
) INTERSTATE () major collector
) fREEWAY/EXPWY. () MINOR COLLECTOR
(X) PRINCIPAL ARTERIAL () local
) minor arterial
```


HIGHWAY SYSTEM

) national highway system
strategic intermodal system
) State highway system
(X) off-State highway system

ACCESS CLASSIFICATION

() 1-fREEWAY
) 2-RESTRICTIVE w/Service Roads
(x) 3-RESTRICTIVE w/660 ft. Connection Spacing
) 4 - Non-RESTRICTIVE w/2640 ft. Signal Spacing
5-RESTRICTIVE w/440 ft. Connection Spacing
() 6 - NON-RESTRICTIVE w/1320 ft. Signal Spacing
) 7 - Both median types

CRITERIA

(X) new construction / reconstruction
() RESURFACING (LA FACILITIES)
() RRR (ARTERIALS \& COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

DESIGN SPEED $=45 \mathrm{MPH}$
nW 49 st structures typical section

TRAFFIC DATA
$\overline{\text { CURRENT YEAR }}=2015$ AADT $=N / A$ ESTIMATED OPENING YEAR $=2025$ AADT $=14900$ STIMATED DESIGN YEAR $=2045$ AADT $=21500$
$=9 \% \quad D=63.5 \% ~ T$
DESIGN HOUR $T=12 \%$
DESIGN SPEED $=45 \mathrm{MPH}$
POSTED SPEED $=45 \mathrm{MPH}$
\& CONST. STA. $147+15.31$ TO STA. $150+30.31$

CONTEXT CLASSIFICATION

```
) C1:NATURAL
    C2T : RURAL TOWN C4:URBAN GENERAL
() C5:URBAN CENTER
() c3R:suburban res. () c6:urban core
(x) N/A:LA facuity
```


FUNCTIONAL CLASSIFICATION

(x) interstate
fREEWAY/EXPWY
() MAJOR COLLECTO
PRINCIPAL ARTERIAL
() minor collector
() minor arterial

highway system

national highway system
Strategic intermodal system
) state highway system
) off-State highway system

ACCESS CLASSIFICATION

(X) 1 - FREEWAY

2-RESTRICTIVE w/Service Roads
3-RESTRICTIVE w/660 ft. Connection Spacing
4 - NoN-RESTRICTIVE w/2640 ft. Signal Spacing
5 - RESTRICTIVE w/440 ft. Connection Spacing
() 6 -Non-RESTRICTIVE w/1320 ft. Signal Spacing

7-both median types

CRITERIA

(x) new construction / reconstruction
() RESURFACING (LA FACILITIES)
() RRR (ARTERIALS \& COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS

 RELATED TO TYPICAL SECTION:design variations
BORDER WIDTH
design exceptions
N/A

DESIGN SPEED $=45 \mathrm{MPH}$
ONE LANE RAMP TYPICAL SECTION

I-75 SOUTHBOUND OFF-RAMP Q CONST. STA. $600+00.00$ TO STA. $640+00.00$ I-75 SOUTHBOUND ON-RAMP \& CONST. STA. $700+00.00$ TO STA. $745+87.90$ I-75 NORTHBOUND ON-RAMP \& CONST. STA. $500+00.00$ TO STA. $546+87.20$
$\frac{\text { TRAFFIC }}{\text { CURRENT YEAR } \quad=2015 \text { AADT }=\text { N/A }}$ ESTIMATED OPENING YEAR $=2025$ AADT $=6400$ STIMATED DESIGN YEAR $=2045$ AADT $=9200$
$=9 \% \quad D=1 \% \quad T=$
DESIGN HOUR $T=12 \%$
DESIGN SPEED $=45 \mathrm{MPH}$
POSTED SPEED $=45 \mathrm{MPH}$

FINANCIAL PROJECT ID	SHEET NO.
$435209-1-22-01$	4

Appendix C: Benefit Cost/Analytical Hierarchy Process

Grade Separation Considerations

The provision of the most efficient grade separation option at the proposed I-75/NW 49 Street interchange site is indeed of critical importance. The ultimate decision as to whether I-75 should cross over or under NW 49 Street will have not only significant direct and quantifiable consequences (e.g. - economic, geometric, operational, safety, etc.) but also other important indirect ramifications.

The purpose of this section is to investigate the optimum grade separation option at the proposed I-75/NW 49 Street interchange site. In order to accomplish this task, both economic as well as other factors will be examined. Figure 1 illustrates the proposed evaluation methodology.

Figure 1 - Evaluation Methodology

The economic considerations will be based on the benefit-cost analysis, a technique for evaluating a project or investment by comparing the economic benefits with the economic costs
of the activity. In addition, it is inherently clear that other less tangible considerations should also play a part in the ultimate decision as to which grade separation option is best for the project site. These other considerations are also discussed below. In summary, our main objective is to compare the desirability of two competing future grade separation options as follows. It should be noted that this investigation excludes the cost and effect of the proposed interchange ramps and thus only covers the l-75 mainline effect. The omission of the ramps effect should not skew the obtained results since their effect will be mostly similar between the two competing options. A detailed description of the two competing options follows.

1.1 Grade Separation Alternatives Description

The two potential crossing alternatives are depicted on Figure 2. Alternative 1 would provide two 6-lane I-75 bridges over NW 49 Street (one for northbound I-75 and one for southbound I-75). Alternative 2 would provide a four lane NW 49 Street bridge over the existing at-grade I-75. It is inherently clear that the initial construction cost of Alternative 1 will be much higher than for Alternative 2, however the addition of an interchange at the site would bring some additional advantages to Alternative 1 that must be gauged before a final crossing recommendation is made. The profiles associated with the provision of both grade separation options are illustrated on Figure 3.

Figure 2 - Alternative Crossing Options

I-75 (SR 93) at NW 49 Street PD\&E Study - Preliminary Engineering Report Appendices Page C-3

Figure 3- Alternatives 1 and 2 - Plan and Profile

1.2 Economic Considerations

As part of evaluating the proposed components of the two alternatives, the level of benefits was derived and compared to the cost of implementing each of the two competing improvements, thus calculating a benefit cost (B / C) ratio. The B / C analysis measures the user benefits from highway improvements versus the highway cost required to produce those benefits (see upper left hand portion of Figure 4). The objective is to select the most efficient transportation improvement plan. All ratios equal to or greater than 1 are considered viable. The higher the ratio, the more desirable the alternative is.

In order to calculate the user costs all relevant alternative data must first be obtained. Table 1 illustrates the basic, facility data associated with each of the two competing alternatives.

Table 1 - Facility Data

Alternative	Description	Length (mile)	Lanes	Geometry		
		Horizontal Curve	Vertical Curve	Remarks		
1	I-75 over NW 49 St.	1.155	Dual 3 lane I-75 bridges	See Fig. 4-5 (top)	See Fig. 4-5 (top)	The cost and benefits of this alternative reflect the provision of an elevated I-75 facility plus an at-grade NW 49 St. connection
2	NW 49 St. over I-75	0.663	4 lane NW 49 St. Bridge	See Fig. 4-5 (bottom)	See Fig. 4-5 (bottom)	The cost and benefits of this alternative reflect the provision of an elevated NW 49 St. over an at-grade (existing) I-75 facility. Maintenance of Traffic (MOT) Benefits

The Traffic Data necessary was tabulated as part of the projects recent IJR for all three years under analysis 2025 (opening year), 2035 (mid year), 2045 (design year). The data for all other interim years was interpolated between the three analysis years. In order to do so the Basic Section Costs along with the stopping and idling costs must be obtained (see Formula below).

The Basic Section Costs are determined as a function of the Average Travel Speed and Delay. Also, the segment lengths under consideration are the distances traveled under each corresponding alternative (see Table 2).

$$
\text { Highway user cost }=H U=(B \times L)+D
$$

Where:

$$
\text { B } \quad=\quad \text { Basic Section Cost }- \text { determined from nomograph obtained from }
$$

SECTION 4 - ALTERNATIVES ANALYSIS

AASHTO Manual.

L = Segment length (see Table 2, Facility Data).
D = Additional unit time and running costs caused by delays, determined from nomograph obtained from AASHTO Manual

The user cost of each alternative is then obtained. This cost is in turn used to calculate the annual benefit.

Once all the benefits have been analyzed the different construction and right-of-way costs between the alternatives is obtained. Then all of the benefits and costs are converted to present worth and annualized over the service life of the project.

Economic Analysis Assumptions

As shown on Table 2, the assumption used in the economic analysis are broken down into two distinct categories.

Table 2 - Economic Analysis Assumptions

Category	Assumptions	Source
Parameters	1. Speeds	Average of speeds within the study segments
	2. Volumes \& Capacity Data	IJR
	3. Rates: Varies between 4% \& 7\%; i=4\% (recommended by FDOT) and $\mathrm{i}=7 \%$ (recommended for Federal Programs)	$\begin{aligned} & \mathrm{i}=4 \% \text { (FDOT-Rdwy-Safety } \\ & \text { Bulletin 14-12) } \\ & \mathrm{i}=7 \% \text { (OMB -Circular A-94) } \end{aligned}$
Cost	1. Prices	Revised Departmental Guidance: Valuation of Travel Time in Economic Analysis. February 2003.
	2. Future Fuel Cost	Based on the U.S. Energy Information (EIA) "Motor Gasoline Prices 1990-2011"
	3. Construction Cost	Based on a preliminary estimate
	4. ROW Cost: $\$ 100 \mathrm{~K} /$ acre $+\$ 50 \mathrm{~K}$ for 50% of impacted parcels for contingencies	City of Ocala (ROW office)

Economic Analysis Results

Figure 3 illustrates the results of the economic analysis between the two competing alternatives. These results are obtained by applying the formula shown below.

The Benefit Cost comparison of Alternative 1 versus Alternative 2 is as follows:
$B / C_{(1-2)}=$ Benefit of Alternative 1 - Benefit of Alternative 2
Cost of Alternative 1 - Cost of Alternative 2

$$
\begin{aligned}
& \underline{\text { for } \mathrm{i}=4 \%} \\
& \mathrm{~B} / \mathrm{C}_{(1-2)}=\frac{\$ 21,445,899-\$ 21,552,543}{\$ 1,703,150-\$ 727,170}=\frac{\$ 106,644}{\$ 975,980}=0.11 \\
& \underline{\text { for } \mathrm{i}=5 \%} \\
& \mathrm{~B} / \mathrm{C}_{(1-2)}=\frac{\$ 21,316,632-\$ 21,423,791}{\$ 1,868,018-\$ 800,539}=\frac{\$ 107,159}{\$ 1,067,479}=0.10 \\
& \underline{\text { for } \mathrm{i}=7 \%} \\
& \mathrm{~B} / \mathrm{C}_{(1-2)}=\underset{\$ 21,135,187-\$ 21,243,689}{\$ 2,201,397-\$ 949,596}=\frac{\$ 108,502}{\$ 1,251,801}=0.09
\end{aligned}
$$

According to the results obtained, from an economic perspective, Alternative 2 is vastly superior to Alternative 1 since it yields very comparable benefits at a much lower implementation cost. However, as previously stated there are other important considerations beyond the strictly economic perspective including MOT that might justify the provision of the grade separated option. These considerations are further discussed next.

This space left blank intentionally

Figure 3 - Benefit-Cost Analysis Results

1.3 Other Considerations

Additional important issues were also considered when determining the best grade separation alternative. A brief discussion of these issues follows.

Traffic Service/Operational Considerations

The proposed interchange is projected to generate up to 25,000 daily trips by the design year (2045), with up to 12% (3,000 trips) by heavy trucks with the existing I-75 truck traffic near the project area ranging from 19 to 23%. Although the combination of the high truck density, steeper NW 49 Street profile (Alternative 2), proximity of the NW 44 Avenue intersection and the additional signalized intersections associated with the new interchange could have a negative impact in the future traffic mobility along the NW 49 Street project area, I-75 experiences significantly higher vehicular and truck volumes that could be negatively impacted by a raised profile along I-75.

Safety Issues

An at-grade NW 49 Street profile (Alternative 1) maximizes sight distance and thus enhances safety for vehicles, pedestrians and bicyclists at the local street network and those entering and exiting I-75. This is particularly important due to the close proximity of the NW 49 Street/NW 44 Avenue intersection to the proposed interchange (less than 1,000 feet). NW 44 Avenue is a northsouth major urban collector parallel to I-75 serving the generally commercial and residential land uses just west of I-75. It provides a direct connection from SR 326 to the north to US 27 to the south. The proximity of the proposed SB off and SB on ramps to NW 44 Avenue could result in operational issues along NW 49 Street.

In summary, an at-grade NW 49 Street profile would facilitate vehicular operational and weaving maneuvers (especially for heavy trucks), thus providing greater safety.

Multimodal Issues

Sidewalks along both sides of the proposed NW 49 Street extension will be provided within the project limits. Although the required maximum grade of NW 49 Street at the interchange site (see Figure 3) does not exceed the maximum ADA grade requirements of 5%, the provision of an overpass along NW 49 Street could be less desirable for pedestrians and bicycle users.

These grades might discourage some potential users especially older/retired and handicapped residents from residential areas just west of the project. It should be noted that the proposed interchange ramps at the site will also represent additional mobility obstacles for crossing

Abstract

pedestrians and bicyclists, potentially forcing them to stop on a gradient. The projected high composition of heavy trucks at the site will likely translate into longer waiting crossing times for pedestrians and bicyclists waiting on a gradient.

Compatibility with Future Plans

An on-going PD\&E Study (at the time of this study) is evaluating the widening of I-75 within the study area. In view of this fact all design concepts under consideration must allow for the future expansion of I-75. The provision of an I-75 overpass at NW 49 Street (Alternative 1) would allow a future I-75 widening with minimal or no disruption to NW 49 Street. This option, however, could come at a high cost of the reconstruction of a new facility depending on the alternative selected by the I-75 Widening PD\&E Study. On the other hand, Alternative 2 (NW 49 Street over I-75) would require the provision of median piers at I-75 which could conflict with the planned future widening of l-75.

1.4 Benefit-Cost Conclusions and Recommendations

As previously stated, the benefit-cost results (Figure 3) show that Alternative 2 is superior to Alternative 1 from an economic perspective. Additionally, the "other considerations" section above discusses some additional considerations including some of the potential drawbacks of each grade separation alternative.

In order to verify the results of the grade separation alternatives analysis, the "economic consideration" factors were evaluated against the "other consideration" factors utilizing the Analytical Hierarchy Process (AHP). The AHP results are included. The results from the AHP alternative evaluation show that Alternative 2 (NW 49 Street over I-75) is indeed the top ranked alternative.

Model Name: Grade Separation I-75

Treeview
Goal: Determine Preferred Alternative
Economic Considerations (L: .770)

Benefit/ Cost

Other Considerations (L: .230)
Traffic Service/ Operational Considerations (L: .350)
Safety I ssues (L: .300)
Multimodal Considerations (L: 200)
Compatibility with Future Plans (L: .150)

Cluster view

Economic Benefit/	Other Co Traffic Safety I Multimod Compatib

Alternatives

I-75 over NW 49 St	.411
NW 49 St over I-75	.589

Data Grid

	Pairwise	Pairwise	Pairwise	Pairwise	Pairwise
Alternative	Economic Benefit/ Cos	Other Co Traffic Service/ Op Considerati	Other Co Safety Issues (L: .300)	Other Co Multimodal Considerati (L: .200)	Other Co Compatibili with Future Plans
\checkmark I-75 over NW 49	. 44	1.00	1.00	1.00	1.00
\checkmark NW 49 St over	1.00	. 22	. 22	. 22	. 22

Priority Graphs

Priorities with respect to:

Goal: Determine Preferred Altemati...

Economic Considerations
.770
Other Considerations
.230
Inconsistency = 0.00
with 0 missing judgments.

Priorities with respect to:

Goal: Determine Preferred Altemative

$>$ Economic Considerations
>Benefit/ Cost

I-75 over NW 49 St

NW 49 St over I-75
. 308

Inconsistency $=\mathbf{0 . 0 0}$
with 0 missing judgments.

Priorities with respect to:

Goal: Determine Preferred Altemative >Other Considerations
Traffic Service/ Operational Considerations
Safety Issues .350
Multimodal Considerations
Compatibility with Future Plans
with 0 missing judgments.

Priorities with respect to:

Goal: Determine Preferred Altemative $>$ Other Considerations
>Traffic Service/ Operational C...

I-75 over NW 49 St

NW 49 St over I-75
Inconsistency = 0.00
with 0 missing judgments.

Priorities with respect to:

Goal: Determine Preferred Altemative >Other Considerations
>Safety I ssues

I-75 over NW 49 St

NW 49 St over I-75
Inconsistency $=\mathbf{0 . 0 0}$
with 0 missing judgments.

Priorities with respect to:

Goal: Determine Preferred Altemative
$>$ Other Considerations
>Multimodal Considerations

I-75 over NW 49 St

NW 49 St over I-75
Inconsistency = 0.00
with 0 missing judgments.

Priorities with respect to:

Goal: Determine Preferred Altemative

$>$ Other Considerations
>Compatibility with Future Pla...

```
I-75 over NW 49 St
NW 49 St over I-75
    Inconsistency = 0.00
    with 0 missing judgments.
Inconsistency = 0.00
with \(\mathbf{0}\) missing judgments.
```

$.818 \square \square$

Synthesis: Details

Alts	Level 1	Level 2	Prty
Total I-...			0.411
I-75 ov...	Total Economic Considerations (L: .770)		0.246
	Economic Considerations (L: .770)	Benefit/C...	. 24562
	Total Other Considerations (L: .230)		0.165
	Other Considerations (L: .230)	Traffic Se...	. 05777
		Safety Iss...	. 04952
		Multimod...	. 03301
		Compatib...	. 02476
Total ...			0.589
NW 49...	Total Economic Considerations (L: .770)		0.553
	Economic Considerations (L: .770)	Benefit/C...	. 55264
	Total Other Considerations (L: .230)		0.037
	Other Considerations (L: .230)	Traffic Se...	. 01284
		Safety Iss...	. 01100
		Multimod...	. 00734
		Compatib...	. 00550

Appendix D: Right-of-Way Estimate

I-75 (S.R. 93) at NW 49 ${ }^{\text {th }}$ Street PD\&E Study - Right of Way Impacts

Appendix E: Cost Estimate

FDOT Long Range Estimating System - Production R4: Project Details Composite Report
 By Component

Project: 435209-1-22-01
Letting Date: 08/2024
Description: I-75(SR 93) AT NW 49TH ST FROM END OF NW 49TH ST TO END OF NW 35TH ST
District: 05 County: 36 MARION
Project Manager: HJG-MET

Version 6
Project Grand
\$40,075,822.21
Total
Description: DDI with Ponds
EARTHWORK COMPONENT

Pay Items Pay Item	Description	Total Unit Quantity	Weighted Avg. Total Amount Unit Price	
$110-1-1$	CLEARING \& GRUBBING	43.90 AC	$\$ 12,537.88$	$\$ 550,413.06$
$120-6$	EMBANKMENT	$1,033,095.42 \mathrm{CY}$	$\$ 9.52 \$ 9,839,375.50$	
	Earthwork Component Total		$\$ 10,389,788.55$	

ROADWAY COMPONENT

Pay Items				
Pay Item	Description	Total Unit Quantity	Weighted Avg. Unit Price	otal Amount
160-4	TYPE B STABILIZATION	120,385.18 SY	\$4.55	\$548,143.81
285-709	OPTIONAL BASE,BASE GROUP 09	82,059.92 SY	\$15.07	1,236,800.48
334-1-13	SUPERPAVE ASPHALTIC CONC, TRAFFIC C	249.05 TN	\$109.86	\$27,360.63
334-1-53	SUPERPAVE ASPH CONC, TRAF C, PG76-22	6,230.85 TN	\$107.00	\$666,700.95
334-1-54	SUPERPAVE ASPH CONC, TRAF D, PG76-22	6,791.05 TN	\$105.00	\$713,060.25
337-7-25	ASPH CONC FC,INC BIT,FC-5,PG76-22	1,646.31 TN	\$153.00	\$251,885.43
337-7-45	ASPH CONC FC,TRAFFIC D,FC12.5,PG 76-22	3,021.02 TN	\$98.00	\$296,059.96
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	124.52 TN	\$126.35	\$15,733.10
544-75-1	CRASH CUSHION	4.00 EA	\$19,966.00	\$79,864.00
706-1-1	RAISED PAVMT MARK, TYPE B W/O FINAL SURF	14.00 EA	\$10.82	\$151.48
706-3	RETRO-REFLECTIVE/RAISED PAVEMENT MARKERS	561.00 EA	\$4.50	\$2,524.50
710-11-101	PAINTED PAVT MARK,STD,WHITE,SOLID,6"	12.42 GM	\$1,108.47	\$13,767.21
710-11-131	PAINTED PAVT MARK,STD,WHITE,SKIP, 6"	3.22 GM	\$507.00	\$1,632.54

710-11-160	PAINTED PAVT MARK,STD,WHITE, MESSAGE	8.00 EA	\$57.00	\$456.00
710-11-170	PAINTED PAVT MARK,STD,WHITE, ARROWS	16.00 EA	\$31.00	\$496.00
711-11-160	THERMOPLASTIC, STD, WHITE, MESSAGE	4.00 EA	\$168.25	\$673.00
711-11-170	THERMOPLASTIC, STD, WHITE, ARROW	22.00 EA	\$70.00	\$1,540.00
711-15-101	THERMOPLASTIC, STD-OP, WHITE, SOLID, 6"	2.09 GM	\$4,200.00	\$8,778.00
711-15-131	THERMOPLASTIC, STD-OP, WHITE, SKIP, 6"	2.40 GM	\$1,285.00	\$3,084.00
711-15-201	THERMOPLASTIC, STD-OP,YELLOW, SOLID, 6"	0.13 GM	\$7,000.00	\$910.00
711-16-101	THERMOPLASTIC, STD-OTH, WHITE, SOLID, 6"	1.96 GM	\$4,600.00	\$9,016.00
711-16-201	THERMOPLASTIC, STD-OTH,YELLOW, SOLID, 6"	1.32 GM	\$4,500.00	\$5,940.00
	Roadway Component Total		\$3,884,577.31	

SHOULDER COMPONENT

Pay Items

Pay Item	Description	Total Unit Quantity	Weighted Avg. Unit Price	Total Amount
104-10-3	SEDIMENT BARRIER	69,911.63 LF	\$1.65	\$115,677.51
104-11	FLOATING TURBIDITY BARRIER	1,030.18 LF	\$11.77	\$12,125.22
104-12	STAKED TURBIDITY BARRIER- NYL REINF PVC	1,339.38 LF	\$9.03	\$12,095.10
104-15	SOIL TRACKING PREVENTION DEVICE	15.00 EA	\$2,467.94	\$37,019.13
104-18	INLET PROTECTION SYSTEM	61.00 EA	\$96.98	\$5,915.90
107-1	LITTER REMOVAL	80.26 AC	\$34.89	\$2,800.20
107-2	MOWING	80.26 AC	\$50.64	\$4,064.41
285-704	OPTIONAL BASE,BASE GROUP 04	19,175.67 SY	\$12.00	\$230,108.04
334-1-53	$\begin{aligned} & \text { SUPERPAVE ASPH CONC, TRAF C, } \\ & \text { PG76-22 } \end{aligned}$	1,930.04 TN	\$107.00	\$206,514.28
337-7-25	ASPH CONC FC,INC BIT,FC-5,PG76-22	701.84 TN	\$153.00	\$107,381.52
520-1-10	CONCRETE CURB \& GUTTER, TYPE F	12,125.00 LF	\$31.60	\$383,160.96
522-1	CONCRETE SIDEWALK AND DRIVEWAYS, 4"	7,328.64 SY	\$38.00	\$278,488.32
570-1-1	PERFORMANCE TURF	35,453.22 SY	\$3.00	\$106,329.78
	Shoulder Component Total			\$1,501,680.34

MEDIAN COMPONENT

Pay Items

Pay Item	Description	Total Unit Quantity	Weighted Avg. Total Amount Unit Price	
		$10,992.96 \mathrm{LF}$	$\$ 25.50$	$\$ 280,320.49$
$520-1-7$	CONCRETE CURB \& GUTTER, TYPE E	$1,132.03 \mathrm{LF}$	$\$ 22.87$	$\$ 25,889.53$
$520-1-10$	CONCRETE CURB \& GUTTER, TYPE F	$1,571.85 \mathrm{LF}$	$\$ 42.50$	$\$ 66,803.63$
$520-5-11$	TRAF SEP CONC-TYPE I, 4' WIDE	$11,023.44 \mathrm{SY}$	$\$ 2.97$	$\$ 32,751.27$

DRAINAGE COMPONENT

Pay Items

Pay Item	Description	Total Unit Quantity	Weighted Avg. Unit Price	otal Amount
110-1-1	CLEARING \& GRUBBING	15.00 AC	\$12,616.60	\$189,249.00
120-1	REGULAR EXCAVATION	180,693.34 CY	\$11.96 \$2,161,092.34	
400-2-2	CONC CLASS II, ENDWALLS	22.26 CY	\$1,478.00	\$32,900.28
425-1-351	INLETS, CURB, TYPE P-5, <10'	40.00 EA	\$4,652.60	\$186,103.94
425-1-361	INLETS, CURB, TYPE P-6, <10'	2.00 EA	\$4,566.95	\$9,133.90
425-1-451	INLETS, CURB, TYPE J-5, <10'	13.00 EA	\$6,013.29	\$78,172.72
425-1-521	INLETS, DT BOT, TYPE C, <10'	8.00 EA	\$3,274.22	\$26,193.78
425-1-541	INLETS, DT BOT, TYPE D, <10'	2.00 EA	\$5,050.00	\$10,100.00
425-2-41	MANHOLES, P-7, <10'	8.00 EA	\$4,503.22	\$36,025.72
425-2-71	MANHOLES, J-7, <10'	6.00 EA	\$6,949.46	\$41,696.76
430-174-124	PIPE CULV, OPT MATL, ROUND,24"SD	3,392.00 LF	\$91.99	\$312,023.20
430-175-124	PIPE CULV, OPT MATL, ROUND, 24"S/CD	2,760.00 LF	\$86.43	\$238,542.72
430-175-136	PIPE CULV, OPT MATL, ROUND, 36"S/CD	992.00 LF	\$139.96	\$138,842.40
430-175-142	PIPE CULV, OPT MATL, ROUND, 42"S/CD	224.00 LF	\$107.87	\$24,162.88
430-175-148	PIPE CULV, OPT MATL, ROUND, 48"S/CD	5,224.00 LF	\$189.43	\$989,582.72
430-175-160	PIPE CULV, OPT MATL, ROUND, 60"S/CD	1,200.00 LF	\$342.72	\$411,268.00
430-984-129	MITERED END SECT, OPTIONAL RD, 24" SD	172.00 EA	\$1,634.44	\$281,123.62
550-10-220	FENCING, TYPE B, 5.1-6.0', STANDARD	6,390.00 LF	\$21.24	\$135,723.60
550-60-234	FENCE GATE,TYP B,SLIDE/CANT,18.120'OPEN	6.00 EA	\$1,748.96	\$10,493.78
570-1-1	PERFORMANCE TURF	75,879.87 SY	\$1.63	\$123,576.89
	Drainage Component Total	\$5,436,008.24		

SIGNING COMPONENT

Pay Items

Pay Item	Description	Total Unit Quantity
$700-1-11$	SINGLE POST SIGN, F\&I GM, <12 SF	44.00 AS
$700-1-12$	SINGLE POST SIGN, F\&I GM, 12-20 SF	92.00 AS
$700-2-14$	MULTI- POST SIGN, F\&I GM, 31-50 SF	12.00 AS
$700-2-15$	MULTI- POST SIGN, F\&I GM, 51-100 SF	4.00 AS
$700-2-16$	MULTI- POST SIGN, F\&I GM, 101-200	4.00 AS

Weighted Avg. Total Amount
Unit Price
\$227,195.03
LIGHTING COMPONENT

Pay Items

Pay Item	Description	Total Unit Quantity	Weighted Avg. Unit Price	Total Amount
630-2-11	CONDUIT, F\& I, OPEN TRENCH	13,896.48 LF	\$9.15	\$127,204.66
630-2-12	CONDUIT, F\& I, DIRECTIONAL BORE	964.35 LF	\$20.40	\$19,670.44
635-2-11	PULL \& SPLICE BOX, F\&I, 13" X 24"	76.00 EA	\$712.89	\$54,179.42
715-1-13	LIGHTING CONDUCTORS, F\&I, INSUL, NO.4-2	44,788.98 LF	\$2.06	\$92,365.32
715-4-13	LIGHT POLE COMPLETE, F\&I- STD, 40'	34.00 EA	\$5,253.63	\$178,623.32
715-4-122	LIGHT POLE COMP, F\&I, WS130, 45'	42.00 EA	\$5,070.75	\$212,971.50
715-500-1	POLE CABLE DIST SYS, CONVENTIONAL	76.00 EA	\$601.05	\$45,679.84
	Lighting Component Total			\$730,694.50

SIGNALIZATIONS COMPONENT

Pay Items

Pay Item	Description	Total Unit Quantity
630-2-11	CONDUIT, F\& I, OPEN TRENCH	3,050.00 LF
630-2-12	CONDUIT, F\& I, DIRECTIONAL BORE	950.00 LF
632-7-1	SIGNAL CABLE- NEW OR RECO, FUR \& INSTALL	5.00 PI
635-2-11	PULL \& SPLICE BOX, F\&I, 13" X 24"	12.00 EA
635-3-11	JUNCTION BOX, FURNISH \& INSTALL, AERIAL	48.00 EA
639-1-112	ELECTRICAL POWER SRV,F\&I,OH,M,PUR BY CON	2.00 AS
639-1-122	ELECTRICAL POWER SRV,F\&I, UG,PUR CONT	3.00 AS
639-2-1	ELECTRICAL SERVICE WIRE, F\&I	240.00 LF
641-2-11	PREST CNC POLE,F\&I,TYP PII,PEDESTAL	12.00 EA
649-21-4	STEEL MAST ARM ASSEMBLY, F\&I, 40'- 30^{\prime}	4.00 EA
649-21-10	STEEL MAST ARM ASSEMBLY, F\&I, 60'	6.00 EA
649-31-103	M/ARM,F\&I, WS-150,SING ARM,W/0 LUM-60	3.00 EA
650-1-14	VEH TRAF SIGNAL,F\&I ALUMINUM, 3 S 1 W	32.00 AS
653-1-11	PEDESTRIAN SIGNAL, F\&I LED COUNT, 1 WAY	26.00 AS
660-1-102	LOOP DETECTOR INDUCTIVE, F\&I, TYPE 2	44.00 EA
660-2-106	LOOP ASSEMBLY, F\&I, TYPE F	32.00 AS
665-1-11	PEDESTRIAN DETECTOR, F\&I, STANDARD	26.00 EA
670-5-111	TRAF CNTL ASSEM, F\&I, NEMA, 1 PREEMPT	3.00 AS
700-3-101	SIGN PANEL, F\&I GM, UP TO 12 SF	4.00 EA
700-3-302	SIGN PANEL, F\&I BM, 12-20 SF	12.00 EA

Weighted Avg. Total Amount Unit Price $\$ 9.14$	$\$ 27,883.50$			
$\$ 20.38$	$\$ 19,365.00$			
$\$ 6,091.24$	$\$ 30,456.20$			
$\$ 762.67$	$\$ 9,152.04$			
$\$ 376.41$	$\$ 18,067.52$			
$\$ 2,661.67$	$\$ 5,323.34$			
$\$ 2,652.57$	$\$ 7,957.70$			
	$\$ 5.19$		$\$ 1,245.00$	
---:	---:			
$\$ 1,232.91$	$\$ 14,794.96$			
$\$ 46,698.68$	$\$ 186,794.72$			
$\$ 44,580.03$	$\$ 267,480.18$			
$\$ 36,708.50$	$\$ 110,125.50$			
$\$ 1,054.91$	$\$ 33,757.04$			
$\$ 593.61$	$\$ 15,433.98$			
$\$ 316.94$	$\$ 13,945.48$			
$\$ 975.15$	$\$ 31,204.80$			
$\$ 237.92$	$\$ 6,185.90$			
$\$ 27,988.29$	$\$ 83,964.86$			
$\$ 136.93$	$\$ 547.72$			

Bridge Type: Misc/Rehab

EX-Items

Pay Item Description
DDIBRIDGE DDI BRIDGE

Bridge No. DDI

Total Unit Weighted Avg. Total Amount Unit Price
\$5,211,935.00 \$5,211,935.00

FDOT Long Range Estimating System - Production
 R4: Project Details Composite Report
 By Component

Project: 435209-1-22-01
Letting Date: 08/2024
Description: I-75(SR 93) AT NW 49TH ST FROM END OF NW 49TH ST TO END OF NW 35TH ST
District: 05 County: 36 MARION
Project Manager: HJG-MET

Version 6
Project Grand $\quad \mathbf{\$ 4 0 , 0 7 5 , 8 2 2 . 2 1}$
Total
Description: DDI with Ponds

Project Sequences Subtotal				\$28,692,649.81
102-1	MAINTENANCE OF TRAFFIC	10.00		\$2,869,264.98
101-1	MOBILIZATION	10.00		\$3,156,191.48
Project Sequences Total				\$34,718,106.27
Project Unknowns		15.00\%		\$5,207,715.94
Design/Build		0.00\%		\$0.00
Non-Bid Components:				
Pay item Description		Quantity Unit	Unit Price	Extended Amount
999-25	INITIAL CONTINGENCY AMOUNT (DO NOT BID)	1.00 LS	\$150,000.00	\$150,000.00
Project Non-Bid Subtotal				\$150,000.00
Version 6 Project Grand Total				\$40,075,822.21

I-75 Interchange PD\&E Engineer's Cost Estimate					
ITEM NO.	ITEM DESCRIPTION	UNIT	QUANTITY	UNIT PRICE	TOTAL COST
102-1	MAINTENANCE OF TRAFFIC	LS	1	\$76,703.10	\$76,703.10
630-2-11	CONDUIT, FURNISH \& INSTALL, OPEN TRENCH	LF	8847	\$7.90	\$69,891.30
630-2-12	CONDUIT, FURNISH \& INSTALL, DIRECTIONAL BORE	LF	9062	\$24.47	\$221,747.14
630-2-14	CONDUIT, FURNISH \& INSTALL, ABOVEGROUND	LF	8	\$29.20	\$233.60
633-1-121	FIBER OPTIC CABLE, F\&I, UNDERGROUND,2-12 FIBERS	LF	810	\$2.23	\$1,806.30
633-1-123	FIBER OPTIC CABLE, F\&I, UNDERGROUND,49-96 FIBERS	LF	21259	\$2.60	\$55,273.40
633-2-31	FIBER OPTIC CONNECTION, INSTALL, SPLICE	EA	332	\$42.86	\$14,229.52
633-3-11	FIBER OPTIC CONNECTION HARDWARE, F\&I, SPLICE ENCLOSURE	EA	5	\$812.20	\$4,061.00
633-3-13	FIBER OPTIC CONNECTION HARDWARE, F\&I, PRETERMINATED CONNECTOR ASSEMBLY	EA	60	\$55.00	\$3,300.00
633-3-16	FIBER OPTIC CONNECTION HARDWARE, F\&I, PATCH PANEL- FIELD TERMINATED	EA	4	\$1,947.50	\$7,790.00
*633-8-1	MULTI-CONDUCTOR COMMUNICATION CABLE, FURISH \& INSTALL	LF	850	\$4.27	\$3,629.50
635-2-11	PULL \& SPLICE BOX, F\&I, 13" $\times 24$ " COVER SIZE	EA	22	\$782.81	\$17,221.82
635-2-12	PULL \& SPLICE BOX, F\&I, 24" $\times 36{ }^{\prime \prime}$ COVER SIZE	EA	12	\$1,425.00	\$17,100.00
635-2-13	PULL \& SPLICE BOX, F\&I, 30" X 60" RECTANGULAR OR 36" ROUND COVER SIZE	EA	6	\$2,300.00	\$13,800.00
639-2-1	ELECTRICAL SERVICE WIRE, FURNISH \& INSTALL	LF	3050	\$5.24	\$15,982.00
** 641-3-263	CONCRETE CCTV POLE, FURNISH \& INSTALL WITHOUT LOWERING DEVICE, 63'	EA	2	\$16,500.00	\$33,000.00
* 660-3-42	VEHICLE DETECTION SYSTEM - MICROWAVE, RELOCATE, ABOVE GROUND EQUIPMENT	EA	1	\$450.00	\$450.00
660-4-11	VEHICLE DETECTION SYSTEM - VIDEO, F\&I, CABINET EQUIPMENT	EA	8	\$11,083.13	\$88,665.04
660-4-12	VEHICLE DETECTION SYSTEM - VIDEO, F\&I, ABOVE GROUND EQUIPMENT	EA	8	\$6,759.52	\$54,076.16
***660-7-11	VEHICLE DETECTION SYSTEM- WRONG WAY FOR EXIT RAMP, 1 OR 2 LANES	EA	2	\$23,790.07	\$47,580.14
* 676-2-122	ITS CABINET, FURNISH \& INSTALL, POLE MOUNT WITH SUNSHIELD, 336S, 24" W X 46" H X 22" D	EA	1	\$9,662.99	\$9,662.99
682-1-113	ITS CCTV CAMERA, F\&I, DOME PTZ ENCLOSURE - PRESSURIZED, IP, HIGH DEFINITION	EA	3	\$8,000.00	\$24,000.00
682-1-400	ITS CCTV CAMERA, RELOCATE, DOME PTZ ENCLOSURE - PRESSURIZED, IP, HIGH DEFINITION	EA	1	\$2,760.00	\$2,760.00
684-1-1	MANAGED FIELD ETHERNET SWITCH, FURNISH \& INSTALL	EA	4	\$2,764.82	\$11,059.28
685-1-12	UNINTERRUPTIBLE POWER SUPPLY, FURNISH AND INSTALL, ONLINE/DOUBLE CONVERSION	EA	4	\$7,317.50	\$29,270.00
700-1-12	SINGLE POST SIGN, F\&I GROUND MOUNT, 12-20 SF	AS	4	\$995.39	\$3,981.56
*700-6-11	HIGHLIGHTED SIGN, F\&I GROUND MOUNT- AC POWERED, UP TO 12 SF	AS	4	\$4,115.05	\$16,460.20
SUB TOTAL					\$843,734.05
		MOBILIZATION		10\%	\$84,373.40
		DESIGN		10\%	\$84,373.40
		CEI		15\%	\$126,560.11
		MOC		3\%	\$25,312.02
		CONTINGENCY		10\%	\$84,373.40
		GRAND TOTAL			\$1,248,726.39

Unit cost per the FDOT Historical Cost - Area 6 (08/01/2019-07/31/2020)

* Unit cost per the FDOT Historical Cost - Current 12 Month Moving Statewide Average (08/01/2019-07/31/2020)
** Unit cost per the FDOT Historical Cost - Historical 12 Month Moving Statewide Average (01/01/2019-12/31/2019)
*** Unit cost per the FDOT Historical Cost - Current 6 Month Moving Statewide Average (02/01/2020-07/31/2020)

Appendix F: FEMA Floodplain Map

Appendix G: Design Variation Memorandum

Submittal/Approval Letter

Abstract

I-75/SR 93 at NW 49 Street in Marion County is a limited access state road facility where a new l-75 interchange at NW 49 Street and an extension of NW 49 Street from NW 44 Avenue to NW 35 Avenue is planned. The project location is in a C3C - Suburban Commercial environment due to the agricultural and industrial land uses, with nearby commercial and low-density residential land uses. The design and posted speed for the I-75 on and off ramps is 45 mph . In addition, the posted speed and design speed of NW 49 Street is 45 mph .

Although the project strives to meet the standards as set by FDOT, it's not feasible to provide the minimum border width requirements at the specified locations due to impacts to the public. Therefore, a design variation is required for border width. The proposed conditions meet standards with the exception of the border width from STA 593+80.00 to STA 636+09.37, along the I-75 Southbound off-ramp.

Recommended by

Name: Carlos Rodriguez, P.E.
Responsible Professional Engineer or Landscape Architect (Lanscape-Only Projects)

Design Variation Memorandum

To: Mario Bizzio, P.E.
District Design Engineer

Date: December 9, 2020

Financial Project ID: 435209-1-22-01 New Construction (\boxtimes) RRR (\square)
Federal Aid Number:
Project Name: I-75 (SR 93) Interchange at NW 49 Street PD\&E Study
State Road Number: 93 Co./Sec./Sub.: 36210000
Begin Project MP: N/A End Project MP: N/A

Requested for the following element(s):
(\square) Lane Width
(\square) Superelevation
(\square) Shoulder Width
(\square) Horizontal Curve Radius (\square
$\square)$ Other
(\square) Vertical Clearance
(\square) Maximum Grade
(\square) Lateral Offset
(\boxtimes) Border Width

I. Project Description

The Florida Department of Transportation (FDOT) in conjunction with Marion County is conducting a Project Development and Environment (PD\&E) Study for a new interchange on Interstate 75 (I-75) at NW 49 Street, located just west of the City of Ocala in Marion County, Florida.
I-75 (SR 93) is a major north-south interstate highway extending from Miami, Florida on the south to Sault Sainte Marie, Michigan in the north. I-75 is the second longest north-south facility in the country (after I-95) traversing six different states. Within the project area, I-75 generally borders the City of Ocala, seat of Marion County in north central Florida. The greater Ocala area has recently experienced one of the highest growth rates in the country for a city its size, and the Marion County Comprehensive Plan outlines a vision to enhance the livability of its residents and promote economic growth in the region. In this vein, the County has designated approximately 3000 acres adjacent to $\mathrm{I}-75$ as a future commerce park. The Ocala 489, located in this area has been established as a "Florida Enterprise Zone" and is composed of a recently constructed FedEx Ground Distribution Hub, Chewy distribution center, an AutoZone distribution center designated as a CSX Select Site, the Florida Crossroads Logistics Center a Red Rock Development, and the remaining undeveloped sites. Development in this area will result in traffic volume increases along I-75 and the entire local roadway network.
Figure 1 depicts the project vicinity. There are two existing I-75 interchanges within the project vicinity. The I-75/US 27 interchange is located approximately 2 miles south of the proposed interchange and the I-75/SR 326 interchange, approximately 2 miles to the north. An Interchange Justification Report (IJR) completed in May 2016 concluded that the existing I-75 interchange ramp movements and intersections at US 27 and at SR 326 are expected to operate at failing levels of service by 2035. A new I-75 interchange at NW 49 Street (approximately midway between the two existing interchanges) is proposed to relieve congestion on the adjacent interchanges. The western limit of this project is NW 44 Avenue (west of I-75) and the eastern limit is the future NW 35 Street extension to the northern end of limerock pit (Magnum Materials Mine), just southeast of the new proposed interchange (Phase 2B). It should be noted that this proposed NW 35 Street extension (Phase 2B) connection will be constructed by the County and is funded for construction in 2021, so it will be completed prior to the interchange being constructed.

Figure 1 - Project Location

II. Description of Design Variation

Due to the close proximity of the commercial properties along NW 44 Avenue on the Northwest side of the proposed interchange, the project will not meet the required border width at one location along the proposed I-75 Southbound off-ramp and a Design Variation for border width is being requested.

Table 1 includes a summary of the location that does not meet the border width standards and thus a border width variance is needed (see Figure 2).

Table 1 - Summary of Substandard Border Width

Location	Begin Station	End Station	Length (FT)	Side	Proposed Border Width Range (FT)
1	$593+80.00$	$636+09.37$	$4,229.37$	RT	33.33 to 94

III. Design Criteria

FDOT:

According to section 211.6 of the 2020 FDOT Design Manual, the required border width is 94 -feet, which is measured from the outside edge of traveled way to the R/W line. This width may be reduced in the area of a crossroad terminal, as long as the design meets the requirements for clear zone, lateral offsets, drainage, and maintenance access.
Fencing, or in special cases, walls or barriers are to contain LA Facilities. These treatments are to be continuous and appropriate for each location. Treatment height and type may vary under special conditions. The treatment is typically placed near the LA R/W line, but location may be adjusted based on site-specific conditions (e.g., ponds, trees, bridges). Placement information and additional data is provided in Standard Plans, Indexes 550-001, 550002, and 550-004.

AASHTO:

According to page 8-5 of the 2011 AASHTO "A Policy on Geometric Design of Streets and Highway", the typical range in border widths of outer separations is 80 to 150 feet wide but much narrower widths may be used in urban areas if retaining walls are employed.

IV. Proposed Criteria

The proposed criteria are to provide a border width that falls below FDOT criteria at the one location that is shown on Table 1. The proposed conditions will meet the minimum required border width of 94 -feet for a limited access facility along the entire I-75 interchange ramps and section of NW $49^{\text {th }}$ Street with the exception of this area where it proposed to be a minimum of 33.33 -feet.

V. Justification

1. Design Variation Analysis

Border width services functional, safety and aesthetic purposes. The border width accommodates (1) roadside design components such as signing, drainage features, guardrail, fencing and clear zone, (2) the construction and maintenance of the facility and (3) permitted public utilities. The available border width at the locations shown in Table 1 do not meet the minimum 94 feet criteria required by FDOT for a limited access facility.
In order to provide the required border width, this additional right-of-way would result in costly property condemnation which would negatively impact the public and local economy. There would be potentially significant costs for building improvements, parking lots for business and overall renovations to the adjacent business. This is in addition to the negative socio-economic impacts associated with attempting to provide the required border width.

The overall design of the proposed project will enhance the safety of the traveling public, without having any negative impacts on surrounding area. The design variation requested will not have a detrimental impact on the traffic safety.

2. Crash History and Analysis

A safety analysis was conducted for existing conditions utilizing crash data recorded within the project's area of influence between years 2013 and 2017. Crash data was obtained for a five-year period from January 1, 2013 through December 31, 2017. The crash data was obtained from the Florida Department of Transportation (FDOT) Crash Analysis Reporting (CAR) online database and the Signal Four Analytics application. Figure 2 summarizes the crash characteristics, including the severity, type and various crash conditions of the cumulative data recorded within the Area of Interest (AOI). There were 1,157 crashes recorded within the AOI during the five-year period. It should be noted that there was a noticeable increase in annual crashes in years 2014 and 2015; but the corresponding AADTs did not increase significantly to support such a change. In view of this, a detailed safety study is recommended for this area, which is beyond the scope of this project. Additional detailed information is included in the Interchange Justification Report.

Figure 2 Summary of Crash Characteristics

3. Benefit/Cost Analysis

The additional expense cannot be justified as there are no crash types that are associated with substandard border width. The benefit cost analysis would result in a B/C ratio of zero (no benefit). Providing the required border width will not enhance the safety or operational characteristics of this facility Therefore, the presented argument supports keeping the proposed roadside border width.

VI. Conclusion and Recommendation

I-75/SR 93 at NW 49 Street in Marion County is a limited access state road facility where a new l-75 interchange at NW 49 Street and an extension of NW 49 Street from NW 44 Avenue to NW 35 Avenue is planned. The project location is in a C3C - Suburban Commercial environment due to the agricultural and industrial land uses, with nearby commercial and low-density residential land uses. The design and posted speed for the I-75 on and off ramps is 45 mph . In addition, the posted speed and design speed of NW 49 Street is 45 mph .

Although the project strives to meet the standards as set by FDOT, it's not feasible to provide the minimum border width requirements at the specified locations due to impacts to the public. Therefore, a design variation is required for border width. The proposed conditions meet standards with the exception of the border width from STA $593+80.00$ to STA 636+09.37, along the I-75 Southbound off-ramp.

Recommended by:

ATTACHMENT 1

TYPICAL SECTION PACKAGE

FINANCIAL PROJECT ID 435209-1-22-01
MARION COUNTY (14242)
I-75 (SR 93) INTERCHANGE AT NW 49TH ST

carlos
 Digitally signed by carlos rodriguez rodriguez $\begin{aligned} & \text { Date: } 2021.02 .11 \\ & \text { 16:47:58-05'00' }\end{aligned}$

TYPICAL SECTION PACKAGE
SHEET NO SHEET DESCRIPTION

TYPICAL SECTION CONCURRENCE

CONTEXT CLASSIFICATION CONCURRENCE:
 Smith
fdot district intermodal systems CDOT DISTRIIT INTERMR
DEVELOPMENT MANAGER

```
(1) C1:NATURAL
(x) cзc: suburban comm.
() C2:RuRal
    () C4:urban general
    ) C2T:Rural town () C5:urban CENTER
() c3R: suburban res
    () CG: urban Core
N/A:L.A. FACILITY
```


FUNCTIONAL CLASSIFICATION

```
() FREEWAY/EXPWY () MAJOR COLLECTOR
(x) pricipal () miNOR COLlector
(1) prncipal arterial () local
    minor ARTERIAL
```

 HIGHWAY SYSTEM
) national highway system
,) SATIONAL HIGHWAY SYSTEM
, STATE highway system
(X) off-State highway system

ACCESS CLASSIFICATION

(1) 1 -freewar
() 2-RESTRICTIVE w/Service Roads
(x) 3-RESTRICTIVE w/660 ft. Connection Spacing
) 4 - Non-RESTRICTIVE w/2640 ft. Signal Spacing
() 5 - RESTRICTIVE w/440 ft. Connection Spacing
() 6 - Non-RESTRICTIVE w/1320 ft. Signal Spacing
) 7 - Both median types

CRITERIA

(X) new construction / reconstruction
() RESURFACING (LA FACILITIES)
() RRR (ARTERIALS \& COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:
N/A

DESIGN SPEED $=45 \mathrm{MPH}$
nW 49 St URBAN TYPICAL SECTION WITH CURB \& GUTtER
q CONST. STA. $131+00.00$ TO STA. $147+15.31$
\& CONST. STA. $150+30.31$ TO STA. $177+64.84$

TRAFFIC DATA

$=2015$ AADT $=$ N/A
ESTIMATED OPENING YEAR $=2025$ AADT $=14900$ ESTIMATED OPENING YEAR $=2025$ AADT $=14900$
ESTIMATED DESIGN YEAR $=2045$ AADT $=21500$
$K=9 \% \quad D=63.5 \% \quad T=24 \%$ (24 HOUR)
DESIGN HOURT $=12 \%$
DESIGN SPEED $=45 \mathrm{MPH}$
POSTED SPEED $=45 \mathrm{MPH}$

FINANCIAL PROJECT ID	SHEET NO.
$435209-1-22-01$	2

```
) C1 : NATURAL
(x) czC: suburban comm.
, C2:RURal
    () C4:urban general
C2T:RURal town () C5:URban center
() c3R: suburban res. () c6:urban core
() na la facuitr
```


FUNCTIONAL CLASSIFICATION

```
) INTERSTATE () major collector
) fREEWAY/EXPWY. () MINOR COLLECTOR
(X) PRINCIPAL ARTERIAL () local
) minor arterial
```


HIGHWAY SYSTEM

) national highway system
strategic intermodal system
) State highway system
(X) off-State highway system

ACCESS CLASSIFICATION

() 1-fREEWAY
) 2-RESTRICTIVE w/Service Roads
(x) 3-RESTRICTIVE w/660 ft. Connection Spacing
) 4 - Non-RESTRICTIVE w/2640 ft. Signal Spacing
5-RESTRICTIVE w/440 ft. Connection Spacing
() 6 - NON-RESTRICTIVE w/1320 ft. Signal Spacing
) 7 - Both median types

CRITERIA

(X) new construction / reconstruction
() RESURFACING (LA FACILITIES)
() RRR (ARTERIALS \& COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

DESIGN SPEED $=45 \mathrm{MPH}$
nW 49 st structures typical section

TRAFFIC DATA
$\overline{\text { CURRENT YEAR }}=2015$ AADT $=N / A$ ESTIMATED OPENING YEAR $=2025$ AADT $=14900$ STIMATED DESIGN YEAR $=2045$ AADT $=21500$
$=9 \% \quad D=63.5 \% ~ T$
DESIGN HOUR $T=12 \%$
DESIGN SPEED $=45 \mathrm{MPH}$
POSTED SPEED $=45 \mathrm{MPH}$
\& CONST. STA. $147+15.31$ TO STA. $150+30.31$

CONTEXT CLASSIFICATION

```
) C1:NATURAL
    C2T : RURAL TOWN C4:URBAN GENERAL
() C5:URBAN CENTER
() c3R:suburban res. () c6:urban core
(x) N/A:LA facuity
```


FUNCTIONAL CLASSIFICATION

(x) interstate
fREEWAY/EXPWY
() MAJOR COLLECTO
PRINCIPAL ARTERIAL
() minor collector
() minor arterial

highway system

national highway system
Strategic intermodal system
) state highway system
) off-State highway system

ACCESS CLASSIFICATION

(X) 1 - FREEWAY

2-RESTRICTIVE w/Service Roads
3-RESTRICTIVE w/660 ft. Connection Spacing
4 - NoN-RESTRICTIVE w/2640 ft. Signal Spacing
5 - RESTRICTIVE w/440 ft. Connection Spacing
() 6 -Non-RESTRICTIVE w/1320 ft. Signal Spacing

7-both median types

CRITERIA

(x) new construction / reconstruction
() RESURFACING (LA FACILITIES)
() RRR (ARTERIALS \& COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS

 RELATED TO TYPICAL SECTION:design variations
BORDER WIDTH
design exceptions
N/A

DESIGN SPEED $=45 \mathrm{MPH}$
ONE LANE RAMP TYPICAL SECTION

I-75 SOUTHBOUND OFF-RAMP Q CONST. STA. $600+00.00$ TO STA. $640+00.00$ I-75 SOUTHBOUND ON-RAMP \& CONST. STA. $700+00.00$ TO STA. $745+87.90$ I-75 NORTHBOUND ON-RAMP \& CONST. STA. $500+00.00$ TO STA. $546+87.20$
$\frac{\text { TRAFFIC }}{\text { CURRENT YEAR } \quad=2015 \text { AADT }=\text { N/A }}$ ESTIMATED OPENING YEAR $=2025$ AADT $=6400$ STIMATED DESIGN YEAR $=2045$ AADT $=9200$
$=9 \% \quad D=1 \% \quad T=$
DESIGN HOUR $T=12 \%$
DESIGN SPEED $=45 \mathrm{MPH}$
POSTED SPEED $=45 \mathrm{MPH}$

FINANCIAL PROJECT ID	SHEET NO.
$435209-1-22-01$	4

ATTACHMENT 2

DESIGN CRITERIA

DESIGN VARIATION FOR
BORDER WIDTH
Financial Project ID.: 435209-1-22-01

On resurfacing projects where paved or usable shoulder widths are less than 10 feet, do one of the following:

- Provide shoulder modifications to allow for acceptable ESU usage, or
- Identify a future project that will provide the required shoulder modifications.

Locate median barrier in accordance with FDM 215. When possible, do not locate median barrier adjacent to the shoulder identified for ESU evacuation.

See FDM 240.1.1 for ESU requirements during construction.

211.4.7 Use of Curb

Type F Curb may be used in areas with design speeds 45 mph or less. Type E Curb may be used in areas with design speeds 55 mph or less. This applies to both median and outside shoulder locations. All curb is prohibited in areas with design speeds greater than 55 mph .

211.4.7.1 Existing Curb

There are infrequent sections of curbed roadways in combination with guardrail on LA Facilities. When there is no crash history associated with these applications, the curb may remain when approved by the District Design Engineer (DDE). Approval by DDE is documented through the development of the Typical Section Package.

211.5 Roadside Slopes

Side slopes within the clear zone are typically 1:6 or flatter. When site conditions require the use of steeper slopes, refer to new construction criteria included in FDM 215.

211.6 Border Width

For new construction the required border width is 94 -feet, which is measured from the outside edge of traveled way to the R/W line. This width may be reduced in the area of a crossroad terminal, as long as the design meets the requirements for clear zone, lateral offsets, drainage, and maintenance access.

Fencing, or in special cases, walls or barriers are to contain LA Facilities. These treatments are to be continuous and appropriate for each location. Treatment height and

[^0]type may vary under special conditions. The treatment is typically placed at or near the LA R/W line, but location may be adjusted based on site-specific conditions (e.g., ponds, trees, bridges). Placement information and additional data is provided in Standard Plans, Indexes 550-001, 550-002, and 550-004.

211.6.1 Border Width on Reconstruction \& Resurfacing Projects

For reconstruction and resurfacing projects where additional R/W will not be acquired, a Design Variation is not required when the following minimum border width is met:
(1) The border width accommodates:
(a) Roadside design components such as signing, drainage features, guardrail, fencing and clear zone
(b) The construction and maintenance of the facility
(c) Permitted public utilities
(2) Along ramps and mainline lanes where roadside barriers are used and thus clear zone is not applicable, the minimum border width from the back of a barrier or retaining wall must be 10 feet if maintenance vehicles have sufficient access from public R/W that is contiguous and unimpeded to the facility.
(3) If the maintenance access is not continuous along a barrier or wall, and thus maintenance vehicles and equipment would need to turn around, then a sufficient turnaround area must be provided that is acceptable and approved by Maintenance.
(4) Maintenance accessibility includes the ability for equipment and vehicles to maneuver around obstacles including fences, lights, signs, side slopes and ponds.

211.7 Horizontal Alignment

The centerline (CL) or baseline (BL) of construction defines the horizontal alignment for roadway and bridge construction. The CL or BL construction is a series of tangents connected by horizontal curves established by the Engineer of Record (EOR). CL or BL construction is often the same alignment as the BL of survey.

Horizontal alignment should be consistent with the anticipated operating speed and with environmental, physical, and economic constraints. Design speed is the principal factor controlling horizontal alignment.

Avoid placing horizontal curves, points of intersection (PI) and superelevation transitions within the limits of a structure or approach slabs. Placement of stationing equations within

211- Limited Access Facilities

8.3 RURAL FREEWAYS

Rural freeways are similar in concept to urban ground-level freeways, but the alignment and cross-sectional elements are more generous in design, which is commensurate with higher design speed and the greater right-of-way that generally is available.

Freeways are initially designed to accommodate anticipated traffic growth for a 20-year period and to remain in service for a much longer time. Any cost savings that might potentially be gained by initially constructing for a lesser design period would likely be offset by the high costs, disruption to the environment, and inconvenience to traffic that would accompany later reconstruction of major facilities.

Although level of service B is desirable for rural freeways, level of service C may be appropriate on auxiliary facilities where volumes are unusually high. Rural freeways generally have four through-traffic lanes except on approaches to metropolitan areas where six or more lanes may be provided. Where intersecting highways are classified as collectors and higher, interchanges are usually provided. Local roads may be terminated at the freeway, connected to frontage roads or other local roads for continuity of travel, or carried over or under the freeway by grade separation with or without an interchange.

8.3.1 Alignment and Profile

Rural freeways are generally designed for high-volume and high-speed operation. They should, therefore, have smooth flowing horizontal and vertical alignments with appropriate combinations of flat curvature and gentle grades. Advantage should be taken of favorable topographic conditions to incorporate variable median widths and independent roadway alignments to enhance the aesthetic aspects of freeways. Changing median widths on tangent alignments should be avoided, where practical, so as not to introduce a distorted appearance.

Because there are usually fewer physical constraints in constructing the rural road network than its urban counterpart, rural freeways can usually be constructed near ground level with smooth and relatively flat profiles. The profile of a rural freeway is controlled more by drainage and earthwork considerations and less by the need for frequent grade separations and interchanges. If elevated or depressed sections are needed, the guidelines for urban freeways are appropriate.

Even though the profile may satisfy all the design controls, the finished vertical alignment may appear forced and angular if minimum criteria are used. The designer should check profile designs in long continuous plots to help avoid an undesirable roller-coaster alignment in rolling terrain. The relation of horizontal and vertical alignment should be studied simultaneously to obtain a desirable combination.

Figure 8-1 illustrates a typical ground-level rural freeway with a curvilinear alignment.

ATTACHMENT 3

ROADWAY CONCEPTUAL PLAN

I-75 (S.R. 93) at NW 49 ${ }^{\text {th }}$ Street PD\&E Study - Preferred Alternative Conceptual Plan

ATTACHMENT 4

SUMMARY OF CRASH ANALYSIS

3.8 Safety Analysis

In accordance with the approved MLOU, a safety analysis was conducted for existing conditions utilizing crash data recorded within the IJR AOI between years 2013 and 2017. The AOI encompasses the I-75 mainline between US 27 and SR 326, the I-75 interchanges with US 27 and with SR 326, as well as the following adjacent segments and intersections:

- Intersection of US 27 at NW $44^{\text {th }}$ Avenue
- Intersection of US 27 at NW 35 ${ }^{\text {th }}$ Avenue Road
- Segment of US 27 from NW $44^{\text {th }}$ Avenue to I-75 southbound ramps
- Segment of US 27 from I-75 northbound ramps to NW 35 th Avenue Road
- Segment of SR 326 from one-half mile west to I-75 southbound off-ramp
- Segment of SR 326 from I-75 northbound ramps to one-half mile east
- Segment of NW $44^{\text {th }}$ Avenue from US 27 to NW 49 ${ }^{\text {th }}$ Street
- Segment of NW 44 ${ }^{\text {th }}$ Avenue from NW 49 ${ }^{\text {th }}$ Street to SR 326

Crash data was obtained for a five-year period from January 1, 2013 through December 31, 2017. The crash data was obtained from the FDOT CARS online database; the Signal Four Analytics application was used to obtain off system crash data, as well as a check against the CARS data. The following sections summarize the recorded crash data. Section 3.8.1 includes a summary of intersections within the AOI, and Sections 3.8 .2 and 3.8 . 3 provide a summary of the crashes recorded on ramps and segments within the AOI, respectively. Police crash reports were reviewed for identified crash clusters/patterns. Figure 3-12 depicts the locations detailed in the following sections.

Each of the following sections will provide a comparison of the 5-year average actual crash rate for each facility against the statewide 5 -year average crash rate on a similar facility, based on characteristics such as number of lanes, divided/undivided, number of legs at an intersection, freeway, arterial, collector, etc.

The equation for actual crash rates of an intersection is

$$
R=\frac{1,000,000 \times \mathrm{C}}{365 \times \mathrm{N} \mathrm{xV}}
$$

Where:
$R=$ Crash rate for the intersection expressed as crashes per million entering vehicles (MEV).
$C=$ Total number of intersection crashes in the study period.
$N=$ Number of years of data.
$V=$ Traffic volumes entering the intersection daily (source: FTI 5-year Historical AADT Reports).

Figure 3-12: Existing Crash Analysis Location Legend

The equation for actual crash rates of a segment or on a ramp is:

$$
R=\frac{1,000,000 \times \mathrm{x}}{365 \times \mathrm{N} \mathrm{x} \mathrm{~V} \mathrm{x} \mathrm{~L}}
$$

Where:
$R=$ Crash rate for the road segment expressed as crashes per million vehicle-miles of travel (MVMT).
$C=$ Total number of crashes in the study period.
$N=$ Number of years of data.
$V=$ Number of vehicles per day (both directions); obtained from FTI 5-year Historical AADT Reports.
$L=$ Length of the roadway segment in miles.
Crash rate calculation worksheets are provided in Appendix D.
District 5 intersection and segment High Crash Locations for the period from 2013 to 2017 were also obtained from the FDOT CARS online database. The data was filtered to only include locations within Marion County; and then to only include intersections and segments corresponding to roadway section numbers going thru the study area. It should be noted that although the High Crash Locations are districtwide, actual crash rates are compared to statewide average crash rates per MEV or MVMT, for corresponding similar facilities. The resultant locations are further discussed in this section; detailed data is provided in Appendix \mathbf{D}.

3.8.1 Intersections

Six intersections were included in the existing conditions analysis, including two at each existing interchange ramp within the AOI. The crash severity and type recorded for each of the six intersections within the AOI during the five-year period, are summarized in Table 3-11 and crash rates provided in Table 3-12; 2013-2017 statewide average crash rate data is provided in Appendix D.

[^1]Table 3-14: Intersection Crash Summaries

Location	Crash Severity \& Type		Year					Total
			2013	2014	2015	2016	2017	
		Overall	9	9	11	7	10	46
	Severity	Injury Property Damage Only	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	5	3	4 3	6	$\begin{aligned} & 24 \\ & 22 \\ & \hline \end{aligned}$
		Rear End	3	5	6	5	7	26
		Left Turn	2	2	1	2	2	9
	Crash Type	Angle	0	2	1	0	0	3
		Off Road	1	0	1	0	0	2
		Other	3	0	2	0	1	6
		Overall	2	3	5	6	11	27
	Severity	Injury	1	1	4	1	4	11
	Severity	Property Damage Only	1	2	1	5	7	16
		Rear End	1	2	1	2	6	12
	Crash Type	Left Turn	1	1	4	1	4	11
		Other	0	0	0	3	1	4
		Overall	6	6	10	4	4	30
	erity	Injury	3	4	5	0	2	14
	,	Property Damage Only	3	2	5	4	2	16
		Rear End	2	2	4	2	1	11
	Crash Type	Left Turn	1	1	2	0	1	5
		Other	3	3	4	2	2	14
		Overall	3	4	10	7	14	38
	Severity	Injury	0	2	2	3	9	16
	Severity	Property Damage Only	3	2	8	4	5	22
		Rear End	1	2	5	4	8	20
	Crash Type	Left Turn	0	1	2	0	2	5
		Other	2	1	3	3	4	13
		Overall	6	4	7	2	12	31
	Severity	Injury	2	0	2	1	4	9
	Severity	Property Damage Only	4	4	5	1	8	22
		Rear End	3	1	4	1	9	18
		Left Turn	2	2	1	1	1	7
	Crash Type	Sideswipe	1	0	2	0	0	3
		Other	0	1	0	0	2	3
		Overall	21	15	14	5	7	62
	Severity	Injury	7	3	5	1	4	20
	Severity	Property Damage Only	14	12	9	4	3	42
		Rear End	10	13	8	0	0	31
		Sideswipe	3	0	2	1	1	7
	Crash Type	Left Turn	5	1	1	2	2	11
		Other	3	1	3	2	4	13
		Overall	0	1	0	1	1	3
	Severity	Injury	0	1	0	1	1	3
	Severity	Property Damage Only	0	0	0	0	0	0
		Head On	0	1	0	0	0	1
	Crash Type	Right Turn	0	0	0	1	0	1
		Other	0	0	0	0	1	1

Table 3-15: 5-Year (2013-2017) Intersection Crash Rates

Intersection		Total Crashes	5-Year AADT ${ }^{1}$	Annual Crash Frequency	Crash Rate (per MEV) ${ }^{2}$	Statewide 5YR Avg Crash Rate
US 27	NW 44 ${ }^{\text {th }}$ Avenue	46	131,200	9.2	0.96	0.533
	I-75 SB ramps	27	106,300	5.4	0.70	0.623
	I-75 NB ramps	30	136,400	6.0	0.60	0.623
	NW 35 ${ }^{\text {th }}$ Avenue Road	38	123,900	7.6	0.84	0.623
SR 326	I-75 SB off-ramp/NW 44 ${ }^{\text {th }}$ Avenue	31	139,200	6.2	0.61	0.623
	I-75 NB ramps	62	150,100	12.4	1.13	0.623
NW 44 ${ }^{\text {th }}$ Ave	NW 49 ${ }^{\text {th }}$ Street	3	36,800	0.6	0.22	0.419

${ }^{1}$ AADT entering intersection
${ }^{2}$ Corresponding AADTs obtained from 2017 FTI Historical AADT Reports

US 27 at NW 44 ${ }^{\text {th }}$ Avenue

A total of 46 crashes were recorded at the intersection of US 27 at NW $44^{\text {th }}$ Avenue during the five-year period. Based on the AADT on US 27 and NW 44 ${ }^{\text {th }}$ Avenue during the five-year period, 9.2 crashes per year represents a rate of approximately 0.96 crashes per MEV. The 2017 fiveyear average crash rate per MEV for similar Urban 4-5 Lane 2-Way Divided Paved intersections was approximately 0.533 ; showing that actual crashes for this location were substantially higher than average. US 27 at NW 44 ${ }^{\text {th }}$ Avenue is reflected as a districtwide high crash intersection location.

Of the 24 injury crashes recorded at the intersection of US 27 and NW $44^{\text {th }}$ Avenue, 12 were rear end crashes, eight were left turn crashes, and three were angle crashes. According to crash data, four of the left turn crashes were between a through vehicle and a vehicle turning left during the permitted phase at the traffic signal.

US 27 at I-75 Southbound Ramps

A total of 27 crashes were recorded at the intersection of US 27 and the I-75 southbound ramps during the five-year period. Based on the AADT on US 27 and on the I-75 southbound off-ramp during the five-year period, 5.4 crashes per year represents a rate of approximately 0.70 crashes per MEV. The 2017 five-year average crash rate per MEV for similar Urban 4-5 Lane 2-Way Divided Raised intersections was approximately 0.623 , showing that actual crashes for this location were higher than average. US 27 at the l-75 southbound ramps is reflected as a districtwide high crash intersection location.

Of the 11 injury crashes recorded at the intersection of US 27 and the I-75 southbound ramps, six were left turn crashes. Five of the left turn crashes were between an eastbound through vehicle and a westbound vehicle turning left during the permitted phase at the traffic signal.

US 27 at I-75 Northbound Ramps

A total of 30 crashes were recorded at the intersection of US 27 and the I-75 northbound ramps during the five-year period. Based on the AADT of US 27 and the $\mathrm{I}-75$ northbound off-ramp during the five-year period, 6.0 crashes per year represents a rate of approximately 0.60 crashes per MEV. The 2017 five-year average crash rate per MEV for similar Urban 4-5 Lane 2-Way Divided Raised intersections was approximately 0.623 ; showing that actual crashes for this location were slightly lower than average. However, US 27 at the I-75 northbound ramps is reflected as a districtwide high crash intersection location.

Of the 30 crashes recorded at the intersection of US 27 and the I-75 northbound ramps, 14 resulted in at least one injury. Eight of the injury crashes were rear end crashes and two were left turn crashes. Among the crash types classified as 'Other' at this location are two angle crashes, three off road crashes, one right turn crash, one sideswipe crash, and one pedestrian crash.

US 27 at NW $35^{\text {th }}$ Avenue Road

A total of 38 crashes were recorded at the intersection of US 27 and NW $35^{\text {th }}$ Avenue Road during the five-year period. Based on the AADT of US 27 and NW $35^{\text {th }}$ Avenue Road during the five-year period, 7.6 crashes per year represents a rate of approximately 0.84 crashes per MEV. The 2017 five-year average crash rate per MEV for similar Urban 4-5 Lane 2-Way Divided Raised intersections was approximately 0.623 ; showing that actual crashes for this location were higher than average. However, it is not reflected as a districtwide high crash intersection location; possibly due to the reconfiguration of the intersection occurring within the 2013-2017 period.

Of the 38 crashes recorded at the intersection of US 27 and NW $35^{\text {th }}$ Avenue Road, 16 resulted in at least one injury. Nine of the injury crashes were rear end crashes and two were left turn crashes.

SR 326 at I-75 Southbound Off-Ramp/NW $44^{\text {th }}$ Avenue

A total of 31 crashes were recorded at the intersection of SR 326 and the I-75 southbound offramp/NW 44 ${ }^{\text {th }}$ Avenue during the five-year period. Based on the AADT of SR 326, the I-75
southbound off-ramp, and NW 44 ${ }^{\text {th }}$ Avenue, 6.2 crashes per year represents a rate of approximately 0.61 crashes per MEV. The 2017 five-year average crash rate per MEV for similar Urban 4-5 Lane 2-Way Divided Raised intersections was approximately 0.623 ; showing that actual crashes for this location were slightly lower than average. However, this intersection is reflected as a districtwide high crash location.

Nine of the 26 crashes at the intersection of SR 326 and the I-75 southbound off-ramp/NW $44^{\text {th }}$ Avenue resulted in at least one injury. Seven of the nine injury crashes recorded at the intersection of SR 326 and the l-75 southbound off-ramp/NW 44 ${ }^{\text {th }}$ Avenue were rear end crashes and one was a left turn crash. Six of the 17 total rear end crashes were in the westbound direction.

SR 326 at I-75 Northbound Ramps

A total of 62 crashes were recorded at the intersection of SR 326 and the I-75 northbound ramps during the five-year period. Based on the AADT of SR 326 and the l-75 northbound off-ramp, 12.4 crashes per year represents a rate of approximately 1.13 crashes per MEV. The 2017 fiveyear average crash rate per MEV for similar Urban 4-5 Lane 2-Way Divided Raised intersections was approximately 0.623 . With this intersection having a crash rate significantly higher than that of similar intersections; it should be noted that in 2016, an auxiliary lane was added to the northbound off-ramp; showing that actual crashes for this location were significantly higher than average. SR 326 at the l-75 northbound ramps is reflected as a districtwide high crash intersection location.

Approximately 90 percent (27 crashes) of the rear end crashes recorded at the intersection of SR 326 and the I-75 northbound ramp involved two northbound vehicles on the l-75 off-ramp. This crash type represents almost half of the recorded injury crashes. Among the crash types classified as 'Other' at this location are four right turn crashes, one angle crash, and three off road crashes.

NW 44 ${ }^{\text {th }}$ Avenue at NW 49 ${ }^{\text {th }}$ Street

A total of 3 crashes were recorded at the intersection of NW $44^{\text {th }}$ Avenue and NW $49^{\text {th }}$ Street during the five-year period. Based on the AADT of NW 44 ${ }^{\text {th }}$ Avenue and NW $49^{\text {th }}$ Street during the five-year period, 0.6 crashes per year represents a rate of approximately 0.22 crashes per MEV. The 2017 five-year average crash rate per MEV for similar Urban 4-5 Lane 2-Way Raised
intersections was approximately 0.419 ; showing that actual crashes for this location were significantly lower than average.

All three (3) of the crashes recorded resulted in injury. One (1) of the crashes was head on and one (1) of the crashes was a right turn.

3.8.2 Interchange Ramps

The I-75 at US 27 interchange is a standard diamond interchange, featuring four ramps. The I75 and SR 326 interchange is a modified diamond interchange with a single "cloverleaf" ramp for westbound SR 326 traffic entering I-75 southbound. The crash severity and type recorded for the interchange ramp during the five-year period are summarized in Table 3-13 with crash rates provided in Table 3-14.

Table 3-16: Interchange Ramp Crash Summaries

Location	Crash Severity \& Type				Year			
			2013	2014	2015	2016	2017	Total
		Overall	2	1	3	3	5	14
	Severity	Fatality	0	0	0	0	0	0
		Injury	2	0	0	2	2	6
		Property Damage Only	0	1	3	1	3	8
	Crash Type	Rollover	2	0	0	0	0	2
		Sideswipe	0	0	1	1	0	2
		Rear End	0	0	1	2	2	5
		Other	0	1	1	0	3	5
I-75 at SR 326 Interchange ramps		Overall	5	6	4	12	19	46
	Severity	Fatality	0	0	0	0	1	1
		Injury	3	2	1	4	6	16
		Property Damage Only	2	4	3	8	12	29
	Crash Type	Rollover	3	3	3	0	0	9
		Sideswipe	0	0	0	3	3	6
		Right Turn	0	1	0	0	1	2
		Off Road	1	1	0	3	1	6
		Other	1	1	1	6	14	23

Table 3-17: 5-Year (2013-2017) Individual Ramp Crash Rates

Location	Length (mi)	Total Crashes	5-Year AADT	Annual Crash Frequency	Crash Rate (per MVMT)
I-75 NB to US 27	0.26	4	31,500	0.8	1.34
I-75 NB from US 27	0.31	2	10,350	0.4	1.71
I-75 SB to US 27	0.30	6	11,900	1.2	4.60
I-75 SB from US 27	0.30	2	33,100	0.4	0.55
I-75 SB to SR 326	0.44	12	21,200	2.4	3.52
I-75 NB to SR 326	0.25	25	50,500	5.0	5.43
I-75 NB from SR 326	0.28	0^{3}	19,200	0.0	0.00
I-75 SB from SR 326 EB	0.46	3	17,400	0.6	1.03
I-75 SB from SR 326 WB	0.29	6	32,100	1.2	1.77

${ }^{1}$ No statewide 5-year average crash rate for ramps provided in CARS
${ }^{2}$ Corresponding AADTs obtained from 2017 FTI Historical AADT Reports
${ }^{3}$ Zero crashes verified

I-75 at US 27 Interchange

A total of 14 crashes were recorded on the ramps and merge/diverge areas at the I-75 at US 27 interchange during the five-year period (not including the intersections at ramp termini). There were six injury crashes. Two were rollovers by northbound vehicles on the northbound I-75 onramp and one involving a bicyclist being struck while crossing the northbound on-ramp. Based on the AADT reported for the ramps, the calculated crash rates for the northbound off/on ramps were 1.34 and 1.71 crashes per MVMT; with 4.60 and 0.55 for the southbound off/on ramps, respectively, during the five-year period. Calculation details are provided in Appendix \mathbf{D}.

I-75 at SR 326 Interchange

A total of 46 crashes were recorded on the ramps and merge/diverge areas at the I-75 at SR 326 interchange during the five-year period (not including the intersections at ramp termini).

The I-75 southbound off-ramp to SR 326 had 12 recorded crashes during the five-year period (3.52 crashes per MVMT), eight of which were rollover crashes. Five of the rollover crashes resulted in injuries to one or more persons involved in the crash. Five of the rollover crashes occurred under dark conditions and two occurred on a wet road surface. Detailed analysis of the adjacent interchanges is beyond the scope of this IJR; therefore, further study by the Department for possible causes and potential mitigation of the rollover crashes is recommended.

The I-75 southbound on-ramp from SR 326 eastbound had three recorded crashes during the five-year period, zero resulting in injury (1.03 crashes per MVMT). Two of the crashes were related to vehicles exiting the driveway immediately adjacent to the on-ramp diverge on SR 326.

The l-75 southbound on-ramp from SR 326 westbound had six recorded crashes during the fiveyear period, two resulting in injury (1.77 crashes per MVMT). Four of the crashes involved a same direction sideswipe and one was a rear end crash at the merge onto l-75.

The I-75 northbound off-ramp to SR 326 had 25 recorded crashes during the five-year period (5.43 crashes per MVMT), One being a rollover crash that resulted in an injury. These crashes are in addition to those recorded at the signalized intersection with SR 326.

Although crashes occurred at the ramp terminal, there were no recorded crashes during the fiveyear period for the I-75 northbound on-ramp from SR 326.

3.8.3 Segments

The segments evaluated for the existing conditions analysis include the segments of I-75 between ramps at each study interchange, the 3.7 -mile segment of $1-75$ between the two interchanges, the segment of US 27 and SR 326 from the l-75 ramps to the nearest signalized intersection in either direction (or a half-mile segment, if no signalized intersection is within the AOI), and two segments of NW $44^{\text {th }}$ Avenue. The crash severity and type recorded for the segments during the five-year period are summarized in Table 3-15 with crash rates provided in Table 3-16; 2013-2017 statewide average crash rate data is provided in Appendix D.

This space intentionally left blank.

Table 3-18: Segment Crash Summaries

(continued on next page)

Table 3-15: Segment Crash Summaries (continued)

Location	Crash Severity \& Type		Year					Total
			2013	2014	2015	2016	2017	
$\begin{aligned} & \stackrel{n}{1} \\ & \frac{1}{0} \\ & 3 \\ & \mathbf{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$		Overall	3	2	2	1	6	14
	Severity	Injury Property Damage Only	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$			
	Crash Type	Rear End Left Turn Other	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 7 \\ & 2 \\ & \hline \end{aligned}$
		Overall	11	23	35	35	28	132
	Severity	Fatality Injury Property Damage Only	$\begin{aligned} & 0 \\ & 3 \\ & 8 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 4 \\ 18 \end{gathered}$	$\begin{gathered} 0 \\ 7 \\ 28 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ 9 \\ 26 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 12 \\ 16 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 35 \\ 96 \\ \hline \end{gathered}$
	Crash Type	Rear End Off Road Sideswipe Rollover Other	3	$\begin{gathered} 3 \\ 0 \\ 9 \\ 0 \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0 \\ 10 \\ 1 \\ 22 \end{gathered}$	$\begin{gathered} 7 \\ 0 \\ 5 \\ 0 \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ 1 \\ 5 \\ 0 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ 2 \\ 33 \\ 1 \\ 73 \\ \hline \end{gathered}$
		Overall	7	3	8	6	5	29
	Severity	Injury Property Damage Only	$\begin{aligned} & 2 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$			
	Crash Type	Off Road Rear End Left Turn Angle Other	$\begin{aligned} & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 3 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 9 \\ & 3 \\ & 2 \\ & 6 \\ & 9 \end{aligned}$
		Overall	4	3	1	2	4	14
	Severity	Injury Property Damage Only	$\begin{aligned} & 1 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$			
	Crash Type	Off Road Rear End Left Turn Other	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 2	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	5 3 2 4

Table 3-19: 5-Year (2013-2017) Segment Crash Rates

Roadway	Segment Limits	Length (mi)	Total Crashes	5-Year AADT	Annual Crash Frequency	Crash Rate $\left(\right.$ per MVMT) ${ }^{1}$	Statewide 5YR Avg Crash Rate
1-75	between US 27 ramps	0.70	69	170,800	13.8	1.58	0.976
	US 27 to SR 326	3.70	411	333,500	82.2	0.91	0.976
	between SR 326 ramps	0.70	109	129,500	21.8	3.29	0.976
US 27	NW 44 ${ }^{\text {th }}$ Avenue to I-75 SB ramps	0.57	73	94,400	14.6	3.72	5.884
	I-75 NB ramps to NW 35 ${ }^{\text {th }}$ Ave Rd	0.25	10	104,900	2.0	1.04	3.364
SR 326	1/2 mile west of SB ramps	0.50	14	99,600	2.8	0.77	3.364
	NB ramps to $1 / 2$ mile east	0.68	132	99,600	26.4	5.34	5.884
NW 44 ${ }^{\text {th }}$	US 27 to NW 49 ${ }^{\text {th }}$ Street	1.85	29	36,800	5.8	1.17	3.364
Avenue	NW 49 ${ }^{\text {th }}$ Street to SR 326	2.13	14	36,800	2.8	0.49	3.654

${ }^{1}$ Corresponding AADTs obtained from 2017 FTI Historical AADT Reports

I-75 between US 27 Ramps

A total of 69 crashes were recorded on the 0.70 -mile segment of $\mathrm{I}-75$ between the US 27 interchange ramps during the five-year period. Based on the AADT of l-75 during this period, 13.8 crashes per year represents a rate of approximately 1.58 crashes per MVMT. The average crash rate for urban interstate segments in 2017 was approximately 0.976 crashes per MVMT; showing that actual crashes for this location were significantly higher than average. I-75 between the US 27 interchange ramps is reflected as a districtwide high crash segment location.

Rear end crashes accounted for 11 of the 17 injury crashes on this segment. Approximately twothirds (22 crashes) of the 35 total rear end crashes were between southbound vehicles. More than half (43 crashes) of the recorded crashes on this segment occurred between 1:00 and 6:00 PM.

I-75 from US 27 to SR 326

A total of 411 crashes were recorded on the 3.70-mile segment of I-75 between US 27 and SR 326 during the five-year period. Based on the AADT of I-75 during the five-year period, 82.2 crashes per year represents a rate of approximately 0.91 crashes per MVMT. The average crash rate for urban interstate segments in 2017 was approximately 0.976 crashes per MVMT; showing that actual crashes for this location were slightly lower than average. However, I-75 between the US 27 and SR 326 is reflected as a districtwide high crash segment location.

Of the injury crashes, 45 percent were rear end crashes. Forty-three percent of total crashes were rear end and 15 percent were sideswipe crashes. The directionality of crashes included 55 percent occurring on the northbound lanes and 45 percent on the southbound lanes.

Approximately 35 percent of crashes occurred under dark conditions (including dawn and dusk) and 24 percent of crashes occurred with wet surface conditions. Of the 56 crashes classified as 'Other' at this location, 50 percent (23 crashes) involved a vehicle striking debris or lost cargo on the interstate.

I-75 between SR 326 Ramps

A total of 109 crashes were recorded on the 0.70 -mile segment of I- 75 between the SR 326 interchange ramps during the five-year period. Based on the AADT of I-75 during this period, 21.8 crashes per year represents a rate of approximately 3.29 crashes per MVMT. The average crash rate for urban interstate segments in 2017 was approximately 0.976 crashes per MVMT; showing that actual crashes for this location were significantly higher than average. I-75 between the SR 326 interchange ramps is reflected as a districtwide high crash segment location.

The highest crash type recorded on this segment of I-75 between SR 326 ramps was rear end with 46 crashes, 26 sideswipe and 15 off-road crashes. Approximately two-thirds of the recorded crashes occurred in the southbound lanes during the five-year period.

US 27 from NW 44 ${ }^{\text {th }}$ Avenue to l-75 Southbound Ramps

A total of 72 crashes were recorded on the 0.57 -mile segment of US 27 between NW $44^{\text {th }}$ Avenue and the I-75 southbound ramps during the five-year period. Based on the AADT of US 27 during this period, 14.6 crashes per year represents a rate of approximately 3.72 crashes per MVMT. The average crash rate in 2017 for an urban four-lane arterial with raised median was approximately 5.884 crashes per MVMT; showing that actual crashes for this location were lower than average. However, US 27 between NW $44^{\text {th }}$ Avenue and the $\mathrm{I}-75$ southbound ramps is reflected as a districtwide high crash segment location.

Ten of the injury crashes were rear end and six were left turn. Approximately 41 percent of the recorded crashes during the five-year period occurred under dark conditions (including dawn and dusk) and 25 percent occurred with wet surface conditions.

US 27 from I-75 Northbound Ramps to NW 35 th Avenue Road

A total of 10 crashes were recorded on the 0.25 -mile segment of US 27 between the I-75 northbound ramps and NW $35^{\text {th }}$ Avenue Road during the five-year period. Based on the AADT of US 27 during the five-year period, two crashes per year represents a rate of approximately 1.04 crashes per MVMT. The average crash rate in 2017 for an urban four-lane arterial with
raised median was approximately 3.364 crashes per MVMT; showing that actual crashes for this location were lower than average.

Five of the ten crashes were recorded on Short Forms by the Ocala Police Department, with limited information. The other five crashes included two sideswipe crashes, one rear end crash, and one angle crash.

SR 326 one-half mile west of I-75

A total of 14 crashes were recorded on SR 326 on the half-mile segment west of the I-75 southbound off-ramp. Based on the AADT of SR 326 during the five-year period, 2.8 crashes per year represent a rate of approximately 0.77 crashes per MVMT. The average crash rate in 2017 for an urban four-lane arterial with raised median was approximately 3.364 crashes per MVMT and for an urban two-lane undivided arterial was approximately 3.1 crashes per MVMT; showing that actual crashes for this location were slightly higher than average.

SR 326 from l-75 Northbound Ramps to one-half mile East

A total of 132 crashes were recorded on the 0.68 -mile segment of SR 326 from the I-75 northbound ramps to one-half mile east. Based on the AADT of SR 326 during the five-year period, 26.4 crashes per year represent a rate of approximately 5.34 crashes per MVMT. The average crash rate in 2017 for an urban four-lane arterial with paved median was approximately 5.884 crashes per MVMT; showing that actual crashes for this location were lower than average.

The only fatal crash within the AOI occurred on this segment of SR 326, when a westbound vehicle struck an intoxicated pedestrian who was improperly walking in the roadway.

Fourteen of the 35 injury crashes were left turn crashes and 12 were rear end crashes. Approximately 15 percent of crashes occurred under dark conditions (including dawn and dusk) and approximately 14 percent of the crashes occurred with wet surface conditions.

NW 44 ${ }^{\text {th }}$ Avenue from US 27 to NW 49 ${ }^{\text {th }}$ Street

A total of 29 crashes were recorded on the 1.85 -mile segment of NW $44^{\text {th }}$ Avenue between US 27 and NW 49 ${ }^{\text {th }}$ Street. Based on the AADT of NW 44 ${ }^{\text {th }}$ Avenue during the five-year period, 5.8 crashes per year represent a rate of approximately 1.17 crashes per MVMT. The average crash rate in 2017 for an urban four-lane collector with raised median was approximately 3.364 crashes per MVMT; showing that actual crashes for this location were lower than average.

Approximately 31 percent of the recorded crashes occurred under dark conditions and 14 percent occurred with wet surface conditions.

NW 44 ${ }^{\text {th }}$ Avenue from NW 49 ${ }^{\text {th }}$ Street to SR 326

A total of 17 crashes were recorded on the 2.13 -mile segment of NW $44^{\text {th }}$ Avenue between NW $49^{\text {th }}$ Street and SR 326. Based on the AADT of NW $44^{\text {th }}$ Avenue during the five-year period, 2.8 crashes per year represent a rate of approximately 0.49 crashes per MVMT. The average crash rate in 2017 for an urban four-lane collector with raised median was approximately 3.654 crashes per MVMT; showing that actual crashes for this location were significantly lower than average.

Approximately 35 percent of the recorded crashes occurred under dark conditions (including dawn and dusk) and 12 percent occurred with wet surface conditions.

3.8.4 Overall Summary

Overall, 1,157 crashes were recorded within the AOI during the five-year period. Figures 3-13 through 3-15 summarize the crash severity, crash types, and various crash conditions of the cumulative data recorded within the AOI. There was a noticeable increase in annual crashes in years 2014 and 2015; however, there was not a proportionate change in AADTs to suggest these increases were directly correlated to increased exposure. Therefore, a detailed safety study is recommended for this area, which is beyond the scope of this IJR. Corresponding crash data tables for the five-year evaluation period are provided in Appendix \mathbf{D}.

Figure 3-13: Crash Severity by Year

Figure 3-14: Crash Type Summary (2013-2017)

Figure 3-15: Crash Conditions (2013-2017)

ATTACHMENT 5

CONSTRUCTION COST ESTIMATE

FDOT Long Range Estimating System - Production R4: Project Details Composite Report
 By Component

Project: 435209-1-22-01
Letting Date: 08/2024
Description: I-75(SR 93) AT NW 49TH ST FROM END OF NW 49TH ST TO END OF NW 35TH ST
District: 05 County: 36 MARION
Project Manager: HJG-MET

Version 6
Project Grand
\$40,075,822.21
Total
Description: DDI with Ponds
EARTHWORK COMPONENT

Pay Items Pay Item	Description	Total Unit Quantity	Weighted Avg. Total Amount Unit Price	
$110-1-1$	CLEARING \& GRUBBING	43.90 AC	$\$ 12,537.88$	$\$ 550,413.06$
$120-6$	EMBANKMENT	$1,033,095.42 \mathrm{CY}$	$\$ 9.52 \$ 9,839,375.50$	
	Earthwork Component Total		$\$ 10,389,788.55$	

ROADWAY COMPONENT

Pay Items				
Pay Item	Description	Total Unit Quantity	Weighted Avg. Unit Price	otal Amount
160-4	TYPE B STABILIZATION	120,385.18 SY	\$4.55	\$548,143.81
285-709	OPTIONAL BASE,BASE GROUP 09	82,059.92 SY	\$15.07	1,236,800.48
334-1-13	SUPERPAVE ASPHALTIC CONC, TRAFFIC C	249.05 TN	\$109.86	\$27,360.63
334-1-53	SUPERPAVE ASPH CONC, TRAF C, PG76-22	6,230.85 TN	\$107.00	\$666,700.95
334-1-54	SUPERPAVE ASPH CONC, TRAF D, PG76-22	6,791.05 TN	\$105.00	\$713,060.25
337-7-25	ASPH CONC FC,INC BIT,FC-5,PG76-22	1,646.31 TN	\$153.00	\$251,885.43
337-7-45	ASPH CONC FC,TRAFFIC D,FC12.5,PG 76-22	3,021.02 TN	\$98.00	\$296,059.96
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	124.52 TN	\$126.35	\$15,733.10
544-75-1	CRASH CUSHION	4.00 EA	\$19,966.00	\$79,864.00
706-1-1	RAISED PAVMT MARK, TYPE B W/O FINAL SURF	14.00 EA	\$10.82	\$151.48
706-3	RETRO-REFLECTIVE/RAISED PAVEMENT MARKERS	561.00 EA	\$4.50	\$2,524.50
710-11-101	PAINTED PAVT MARK,STD,WHITE,SOLID,6"	12.42 GM	\$1,108.47	\$13,767.21
710-11-131	PAINTED PAVT MARK,STD,WHITE,SKIP, 6"	3.22 GM	\$507.00	\$1,632.54

710-11-160	PAINTED PAVT MARK,STD,WHITE, MESSAGE	8.00 EA	\$57.00	\$456.00
710-11-170	PAINTED PAVT MARK,STD,WHITE, ARROWS	16.00 EA	\$31.00	\$496.00
711-11-160	THERMOPLASTIC, STD, WHITE, MESSAGE	4.00 EA	\$168.25	\$673.00
711-11-170	THERMOPLASTIC, STD, WHITE, ARROW	22.00 EA	\$70.00	\$1,540.00
711-15-101	THERMOPLASTIC, STD-OP, WHITE, SOLID, 6"	2.09 GM	\$4,200.00	\$8,778.00
711-15-131	THERMOPLASTIC, STD-OP, WHITE, SKIP, 6"	2.40 GM	\$1,285.00	\$3,084.00
711-15-201	THERMOPLASTIC, STD-OP,YELLOW, SOLID, 6"	0.13 GM	\$7,000.00	\$910.00
711-16-101	THERMOPLASTIC, STD-OTH, WHITE, SOLID, 6"	1.96 GM	\$4,600.00	\$9,016.00
711-16-201	THERMOPLASTIC, STD-OTH,YELLOW, SOLID, 6"	1.32 GM	\$4,500.00	\$5,940.00
	Roadway Component Total		\$3,884,577.31	

SHOULDER COMPONENT

Pay Items

Pay Item	Description	Total Unit Quantity	Weighted Avg. Unit Price	Total Amount
104-10-3	SEDIMENT BARRIER	69,911.63 LF	\$1.65	\$115,677.51
104-11	FLOATING TURBIDITY BARRIER	1,030.18 LF	\$11.77	\$12,125.22
104-12	STAKED TURBIDITY BARRIER- NYL REINF PVC	1,339.38 LF	\$9.03	\$12,095.10
104-15	SOIL TRACKING PREVENTION DEVICE	15.00 EA	\$2,467.94	\$37,019.13
104-18	INLET PROTECTION SYSTEM	61.00 EA	\$96.98	\$5,915.90
107-1	LITTER REMOVAL	80.26 AC	\$34.89	\$2,800.20
107-2	MOWING	80.26 AC	\$50.64	\$4,064.41
285-704	OPTIONAL BASE,BASE GROUP 04	19,175.67 SY	\$12.00	\$230,108.04
334-1-53	$\begin{aligned} & \text { SUPERPAVE ASPH CONC, TRAF C, } \\ & \text { PG76-22 } \end{aligned}$	1,930.04 TN	\$107.00	\$206,514.28
337-7-25	ASPH CONC FC,INC BIT,FC-5,PG76-22	701.84 TN	\$153.00	\$107,381.52
520-1-10	CONCRETE CURB \& GUTTER, TYPE F	12,125.00 LF	\$31.60	\$383,160.96
522-1	CONCRETE SIDEWALK AND DRIVEWAYS, 4"	7,328.64 SY	\$38.00	\$278,488.32
570-1-1	PERFORMANCE TURF	35,453.22 SY	\$3.00	\$106,329.78
	Shoulder Component Total			\$1,501,680.34

MEDIAN COMPONENT

Pay Items

Pay Item	Description	Total Unit Quantity	Weighted Avg. Total Amount Unit Price	
		$10,992.96 \mathrm{LF}$	$\$ 25.50$	$\$ 280,320.49$
$520-1-7$	CONCRETE CURB \& GUTTER, TYPE E	$1,132.03 \mathrm{LF}$	$\$ 22.87$	$\$ 25,889.53$
$520-1-10$	CONCRETE CURB \& GUTTER, TYPE F	$1,571.85 \mathrm{LF}$	$\$ 42.50$	$\$ 66,803.63$
$520-5-11$	TRAF SEP CONC-TYPE I, 4' WIDE	$11,023.44 \mathrm{SY}$	$\$ 2.97$	$\$ 32,751.27$

DRAINAGE COMPONENT

Pay Items

Pay Item	Description	Total Unit Quantity	Weighted Avg. Unit Price	otal Amount
110-1-1	CLEARING \& GRUBBING	15.00 AC	\$12,616.60	\$189,249.00
120-1	REGULAR EXCAVATION	180,693.34 CY	\$11.96 \$2,161,092.34	
400-2-2	CONC CLASS II, ENDWALLS	22.26 CY	\$1,478.00	\$32,900.28
425-1-351	INLETS, CURB, TYPE P-5, <10'	40.00 EA	\$4,652.60	\$186,103.94
425-1-361	INLETS, CURB, TYPE P-6, <10'	2.00 EA	\$4,566.95	\$9,133.90
425-1-451	INLETS, CURB, TYPE J-5, <10'	13.00 EA	\$6,013.29	\$78,172.72
425-1-521	INLETS, DT BOT, TYPE C, <10'	8.00 EA	\$3,274.22	\$26,193.78
425-1-541	INLETS, DT BOT, TYPE D, <10'	2.00 EA	\$5,050.00	\$10,100.00
425-2-41	MANHOLES, P-7, <10'	8.00 EA	\$4,503.22	\$36,025.72
425-2-71	MANHOLES, J-7, <10'	6.00 EA	\$6,949.46	\$41,696.76
430-174-124	PIPE CULV, OPT MATL, ROUND,24"SD	3,392.00 LF	\$91.99	\$312,023.20
430-175-124	PIPE CULV, OPT MATL, ROUND, 24"S/CD	2,760.00 LF	\$86.43	\$238,542.72
430-175-136	PIPE CULV, OPT MATL, ROUND, 36"S/CD	992.00 LF	\$139.96	\$138,842.40
430-175-142	PIPE CULV, OPT MATL, ROUND, 42"S/CD	224.00 LF	\$107.87	\$24,162.88
430-175-148	PIPE CULV, OPT MATL, ROUND, 48"S/CD	5,224.00 LF	\$189.43	\$989,582.72
430-175-160	PIPE CULV, OPT MATL, ROUND, 60"S/CD	1,200.00 LF	\$342.72	\$411,268.00
430-984-129	MITERED END SECT, OPTIONAL RD, 24" SD	172.00 EA	\$1,634.44	\$281,123.62
550-10-220	FENCING, TYPE B, 5.1-6.0', STANDARD	6,390.00 LF	\$21.24	\$135,723.60
550-60-234	FENCE GATE,TYP B,SLIDE/CANT,18.120'OPEN	6.00 EA	\$1,748.96	\$10,493.78
570-1-1	PERFORMANCE TURF	75,879.87 SY	\$1.63	\$123,576.89
	Drainage Component Total	\$5,436,008.24		

SIGNING COMPONENT

Pay Items

Pay Item	Description	Total Unit Quantity
$700-1-11$	SINGLE POST SIGN, F\&I GM, <12 SF	44.00 AS
$700-1-12$	SINGLE POST SIGN, F\&I GM, 12-20 SF	92.00 AS
$700-2-14$	MULTI- POST SIGN, F\&I GM, 31-50 SF	12.00 AS
$700-2-15$	MULTI- POST SIGN, F\&I GM, 51-100 SF	4.00 AS
$700-2-16$	MULTI- POST SIGN, F\&I GM, 101-200	4.00 AS

Weighted Avg. Total Amount
Unit Price
\$227,195.03
LIGHTING COMPONENT

Pay Items

Pay Item	Description	Total Unit Quantity	Weighted Avg. Unit Price	Total Amount
630-2-11	CONDUIT, F\& I, OPEN TRENCH	13,896.48 LF	\$9.15	\$127,204.66
630-2-12	CONDUIT, F\& I, DIRECTIONAL BORE	964.35 LF	\$20.40	\$19,670.44
635-2-11	PULL \& SPLICE BOX, F\&I, 13" X 24"	76.00 EA	\$712.89	\$54,179.42
715-1-13	LIGHTING CONDUCTORS, F\&I, INSUL, NO.4-2	44,788.98 LF	\$2.06	\$92,365.32
715-4-13	LIGHT POLE COMPLETE, F\&I- STD, 40'	34.00 EA	\$5,253.63	\$178,623.32
715-4-122	LIGHT POLE COMP, F\&I, WS130, 45'	42.00 EA	\$5,070.75	\$212,971.50
715-500-1	POLE CABLE DIST SYS, CONVENTIONAL	76.00 EA	\$601.05	\$45,679.84
	Lighting Component Total			\$730,694.50

SIGNALIZATIONS COMPONENT

Pay Items

Pay Item	Description	Total Unit Quantity
630-2-11	CONDUIT, F\& I, OPEN TRENCH	3,050.00 LF
630-2-12	CONDUIT, F\& I, DIRECTIONAL BORE	950.00 LF
632-7-1	SIGNAL CABLE- NEW OR RECO, FUR \& INSTALL	5.00 PI
635-2-11	PULL \& SPLICE BOX, F\&I, 13" X 24"	12.00 EA
635-3-11	JUNCTION BOX, FURNISH \& INSTALL, AERIAL	48.00 EA
639-1-112	ELECTRICAL POWER SRV,F\&I,OH,M,PUR BY CON	2.00 AS
639-1-122	ELECTRICAL POWER SRV,F\&I, UG,PUR CONT	3.00 AS
639-2-1	ELECTRICAL SERVICE WIRE, F\&I	240.00 LF
641-2-11	PREST CNC POLE,F\&I,TYP PII,PEDESTAL	12.00 EA
649-21-4	STEEL MAST ARM ASSEMBLY, F\&I, 40'- 30^{\prime}	4.00 EA
649-21-10	STEEL MAST ARM ASSEMBLY, F\&I, 60'	6.00 EA
649-31-103	M/ARM,F\&I, WS-150,SING ARM,W/0 LUM-60	3.00 EA
650-1-14	VEH TRAF SIGNAL,F\&I ALUMINUM, 3 S 1 W	32.00 AS
653-1-11	PEDESTRIAN SIGNAL, F\&I LED COUNT, 1 WAY	26.00 AS
660-1-102	LOOP DETECTOR INDUCTIVE, F\&I, TYPE 2	44.00 EA
660-2-106	LOOP ASSEMBLY, F\&I, TYPE F	32.00 AS
665-1-11	PEDESTRIAN DETECTOR, F\&I, STANDARD	26.00 EA
670-5-111	TRAF CNTL ASSEM, F\&I, NEMA, 1 PREEMPT	3.00 AS
700-3-101	SIGN PANEL, F\&I GM, UP TO 12 SF	4.00 EA
700-3-302	SIGN PANEL, F\&I BM, 12-20 SF	12.00 EA

Weighted Avg. Total Amount Unit Price $\$ 9.14$	$\$ 27,883.50$			
$\$ 20.38$	$\$ 19,365.00$			
$\$ 6,091.24$	$\$ 30,456.20$			
$\$ 762.67$	$\$ 9,152.04$			
$\$ 376.41$	$\$ 18,067.52$			
$\$ 2,661.67$	$\$ 5,323.34$			
$\$ 2,652.57$	$\$ 7,957.70$			
	$\$ 5.19$		$\$ 1,245.00$	
---:	---:			
$\$ 1,232.91$	$\$ 14,794.96$			
$\$ 46,698.68$	$\$ 186,794.72$			
$\$ 44,580.03$	$\$ 267,480.18$			
$\$ 36,708.50$	$\$ 110,125.50$			
$\$ 1,054.91$	$\$ 33,757.04$			
$\$ 593.61$	$\$ 15,433.98$			
$\$ 316.94$	$\$ 13,945.48$			
$\$ 975.15$	$\$ 31,204.80$			
$\$ 237.92$	$\$ 6,185.90$			
$\$ 27,988.29$	$\$ 83,964.86$			
$\$ 136.93$	$\$ 547.72$			

Bridge Type: Misc/Rehab

EX-Items

Pay Item Description
DDIBRIDGE DDI BRIDGE

Bridge No. DDI

Total Unit Weighted Avg. Total Amount Unit Price
\$5,211,935.00 \$5,211,935.00

FDOT Long Range Estimating System - Production
 R4: Project Details Composite Report
 By Component

Project: 435209-1-22-01
Letting Date: 08/2024
Description: I-75(SR 93) AT NW 49TH ST FROM END OF NW 49TH ST TO END OF NW 35TH ST
District: 05 County: 36 MARION
Project Manager: HJG-MET

Version 6
Project Grand $\quad \mathbf{\$ 4 0 , 0 7 5 , 8 2 2 . 2 1}$
Total
Description: DDI with Ponds

Project Sequences Subtotal				\$28,692,649.81
102-1	MAINTENANCE OF TRAFFIC	10.00		\$2,869,264.98
101-1	MOBILIZATION	10.00		\$3,156,191.48
Project Sequences Total				\$34,718,106.27
Project Unknowns		15.00\%		\$5,207,715.94
Design/Build		0.00\%		\$0.00
Non-Bid Components:				
Pay item Description		Quantity Unit	Unit Price	Extended Amount
999-25	INITIAL CONTINGENCY AMOUNT (DO NOT BID)	1.00 LS	\$150,000.00	\$150,000.00
Project Non-Bid Subtotal				\$150,000.00
Version 6 Project Grand Total				\$40,075,822.21

I-75 Interchange PD\&E Engineer's Cost Estimate					
ITEM NO.	ITEM DESCRIPTION	UNIT	QUANTITY	UNIT PRICE	TOTAL COST
102-1	MAINTENANCE OF TRAFFIC	LS	1	\$76,703.10	\$76,703.10
630-2-11	CONDUIT, FURNISH \& INSTALL, OPEN TRENCH	LF	8847	\$7.90	\$69,891.30
630-2-12	CONDUIT, FURNISH \& INSTALL, DIRECTIONAL BORE	LF	9062	\$24.47	\$221,747.14
630-2-14	CONDUIT, FURNISH \& INSTALL, ABOVEGROUND	LF	8	\$29.20	\$233.60
633-1-121	FIBER OPTIC CABLE, F\&I, UNDERGROUND,2-12 FIBERS	LF	810	\$2.23	\$1,806.30
633-1-123	FIBER OPTIC CABLE, F\&I, UNDERGROUND,49-96 FIBERS	LF	21259	\$2.60	\$55,273.40
633-2-31	FIBER OPTIC CONNECTION, INSTALL, SPLICE	EA	332	\$42.86	\$14,229.52
633-3-11	FIBER OPTIC CONNECTION HARDWARE, F\&I, SPLICE ENCLOSURE	EA	5	\$812.20	\$4,061.00
633-3-13	FIBER OPTIC CONNECTION HARDWARE, F\&I, PRETERMINATED CONNECTOR ASSEMBLY	EA	60	\$55.00	\$3,300.00
633-3-16	FIBER OPTIC CONNECTION HARDWARE, F\&I, PATCH PANEL- FIELD TERMINATED	EA	4	\$1,947.50	\$7,790.00
*633-8-1	MULTI-CONDUCTOR COMMUNICATION CABLE, FURISH \& INSTALL	LF	850	\$4.27	\$3,629.50
635-2-11	PULL \& SPLICE BOX, F\&I, 13" $\times 24$ " COVER SIZE	EA	22	\$782.81	\$17,221.82
635-2-12	PULL \& SPLICE BOX, F\&I, 24" $\times 36{ }^{\prime \prime}$ COVER SIZE	EA	12	\$1,425.00	\$17,100.00
635-2-13	PULL \& SPLICE BOX, F\&I, 30" X 60" RECTANGULAR OR 36" ROUND COVER SIZE	EA	6	\$2,300.00	\$13,800.00
639-2-1	ELECTRICAL SERVICE WIRE, FURNISH \& INSTALL	LF	3050	\$5.24	\$15,982.00
** 641-3-263	CONCRETE CCTV POLE, FURNISH \& INSTALL WITHOUT LOWERING DEVICE, 63'	EA	2	\$16,500.00	\$33,000.00
* 660-3-42	VEHICLE DETECTION SYSTEM - MICROWAVE, RELOCATE, ABOVE GROUND EQUIPMENT	EA	1	\$450.00	\$450.00
660-4-11	VEHICLE DETECTION SYSTEM - VIDEO, F\&I, CABINET EQUIPMENT	EA	8	\$11,083.13	\$88,665.04
660-4-12	VEHICLE DETECTION SYSTEM - VIDEO, F\&I, ABOVE GROUND EQUIPMENT	EA	8	\$6,759.52	\$54,076.16
***660-7-11	VEHICLE DETECTION SYSTEM- WRONG WAY FOR EXIT RAMP, 1 OR 2 LANES	EA	2	\$23,790.07	\$47,580.14
* 676-2-122	ITS CABINET, FURNISH \& INSTALL, POLE MOUNT WITH SUNSHIELD, 336S, 24" W X 46" H X 22" D	EA	1	\$9,662.99	\$9,662.99
682-1-113	ITS CCTV CAMERA, F\&I, DOME PTZ ENCLOSURE - PRESSURIZED, IP, HIGH DEFINITION	EA	3	\$8,000.00	\$24,000.00
682-1-400	ITS CCTV CAMERA, RELOCATE, DOME PTZ ENCLOSURE - PRESSURIZED, IP, HIGH DEFINITION	EA	1	\$2,760.00	\$2,760.00
684-1-1	MANAGED FIELD ETHERNET SWITCH, FURNISH \& INSTALL	EA	4	\$2,764.82	\$11,059.28
685-1-12	UNINTERRUPTIBLE POWER SUPPLY, FURNISH AND INSTALL, ONLINE/DOUBLE CONVERSION	EA	4	\$7,317.50	\$29,270.00
700-1-12	SINGLE POST SIGN, F\&I GROUND MOUNT, 12-20 SF	AS	4	\$995.39	\$3,981.56
*700-6-11	HIGHLIGHTED SIGN, F\&I GROUND MOUNT- AC POWERED, UP TO 12 SF	AS	4	\$4,115.05	\$16,460.20
SUB TOTAL					\$843,734.05
		MOBILIZATION		10\%	\$84,373.40
		DESIGN		10\%	\$84,373.40
		CEI		15\%	\$126,560.11
		MOC		3\%	\$25,312.02
		CONTINGENCY		10\%	\$84,373.40
		GRAND TOTAL			\$1,248,726.39

Unit cost per the FDOT Historical Cost - Area 6 (08/01/2019-07/31/2020)

* Unit cost per the FDOT Historical Cost - Current 12 Month Moving Statewide Average (08/01/2019-07/31/2020)
** Unit cost per the FDOT Historical Cost - Historical 12 Month Moving Statewide Average (01/01/2019-12/31/2019)
*** Unit cost per the FDOT Historical Cost - Current 6 Month Moving Statewide Average (02/01/2020-07/31/2020)

ATTACHMENT 6

RW IMPACTS

I-75 (S.R. 93) at NW 49 ${ }^{\text {th }}$ Street PD\&E Study - Right of Way Impacts

[^0]: 211- Limited Access Facilities

[^1]: This space is intentionally left blank

